Data Flow Analysis as an Aid in Documentation,
Assertion Generation, Validation, and Error Detection *

Leon J. Osterweil
Lloyd D. Fosdick

CU-CS-055-74

S
jUniversity of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

* Supported in part by NSF Grant GJ-36461.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Data Flow Analysis as an Aid in
Documentation, Assertion Generation,
Validation, and Error Detection*

by

Leon J. Osterweil
and
Lloyd D. Fosdick

Department of Computer Science
University of Colorado
Boulder, Colorado 80302

Report #CU-CS-055-74 September 1974

Key Words: program testing, data flow analysis, software validation,
automated documentiation, debugging

* Supported in part by NSF Grant GJ-36461.

Osterweil/Fosdick

ABSTRACT

Data flow analysis has already been applied to problems in code
optimization and hardware design. It now appears that data flow
analysis can also be a useful tool in validation and verification of
software. By examining the data flow in a program much can be learned
about its quality and correctness, for the pattern of data accesses
and data assignments within a program is often diagnostic of sloppy or
incorrect code. In an earlier paper by the authors, an algorithm for
analyzing data flows in programs was presented. The problems of apply-
ing that algorithm to ANST Fortran programs are described here. Tt is
shown that Fortran programming errors and abuses such as the use of
uninitialized variables, the generation of unneeded values, improper
subprogram invocations and the creation of illegal side effects are
all examples of data flow anomalies and can all be detected through the
use of a system based upon this algorithm. The implementation of such
a system, called DAVE, has been carried out and is described here.

Results of applying this analytic system are presented.

Key Words: program testing, data flow analysis, software validation,
automated documentation, debugging

Osterweil /Fosdick - 1

Introduction

Recently much work has been focused on the analysis of computer
programs. Active research is being carried out in such areas as proof
of program correctness, detection of program errors, symbolic execution
of programs, design of error-resistant languages and coding techniques,
and automatic generation of assertions and documentation. The success of
these endeavors seems to us to depend upon the extent to which investiga-
tors are able to devise methods of modelling and understanding the behavior
of programs.

We too have devoted considerable effort to the analysis of program
behavior. We are convinced that the study of data flows within a program
provides a key to an understanding of program behavior. By application
of data flow analysis to programs we feel that we have made significant
attacks on such problems as detection of semantic program errors, auto-
mated creation of assertions and automated production of program documenta-
tion.

In this paper we describe a data flow analysis system which has been
built. The way in which our system tracks the flow of data from statement
to statement, block to block, and subprogram to subprogram, is described,
and we point out how anomalous data flow is detected by this system,
observing that it is quite often symptomatic of program errors. We show
how hidden data flows cam be exposed, and data flow assertions geperated
by the system. Finally, we observe that subtle--even invisible--data
flows are all too easily created. We note that the difficulty of detection
and analysis of such flows, both for analytic systems and human programmers,

seems to increase the likelihood of error.

Osterweil/Fosdick - 2

Our present work uses ANSI Fortran as the language of the subject
program, however the ideas and algorithms we use have a much wider
application. The analysis used in the verification deals with a data
structure for variables and a directed graph for the control paths which
could have been derived from a program written in a language other than
Fortran. The implementation itself is written in ANST Fortran and con-
siderable attention has been given to making it portable. It is called
DAVE (Documentation, Assertion generating, Validation, Error detection).
Our work began in the spring of 1973 and at the time of this writing a
limited version of the system is completed and being tested. This version
contains about 8K source statements and occupies about 50K words of
memory. Examples of some output from DAVE appear later in this paper.
We have been assisted in this work by a number of part-time graduate
résearch assistants, Richard Maguire, Lamar Ledbetter, Lori Clarke, David

Smith, and a full-time computer scientist, Carol Miesse.

Definitions
We represent the flow of control in a program by a directed graph

called the control flow graph. We use I' to denote the successor operator;

thus, I'x denotes the set of nodes joined to the node x by edges directed from
% and P—lx denotes the set of nodes joined to the node % by edges directed
toward x. The nodes in this graph are sequences of statements called

basic blocks. A basic block is a maximal sequence of statements having

the property that whenever any one of the statements in the basic block

is executed, every statement in the basic block is executed. This

coincides with the definition often used in code optimization

({11, ». 12).

Osterweil /Fosdick - 3

We represent the linkages between program units by a directed graph

called the calling graph. The calling graph of a program has as its

nodes the program's constituent program units, and has an edge from
node A to node B if the subprogram represented by B is invoked from the
program unit represented by A.

The control flow graph is assumed to have one entry point (a node
with indegree zero) and one or more exit points (nodes with outdegree

zero). A control path is a path in this graph; i.e. a list of nodes

X: s X, 5 see,Where x, ¢ Ix, . Not every control path is a sequence
i A i 1 i
1 2 n+l n
of basic blocks which could be executed. An execution path is a control

path which could be executed.
The role that a variable, V, plays in the data flow for execution of
a statement, a basic block, and a subprogram is identified by assigning
an input-output classification to it for each of these structures,
In a statement such as
A=3B+C

the variables B and C are referenced to define a value for A. To identify

this role of the variables B and C we say that B and C are strict input

variables for this statement and we say that A is a strict output variable

for this statement. 1In a statement a variable may be strict input and
strict output; this is the case for X in the statement

X =X+Y.
For completeness we classify the input role and the output role of a
variable in a statement. In the first statement above A is non-input
and strict output (NI, SO0), while B and C are non-output and strict
input (SI, NO). This classification is extended to basic blocks and

subprograms. Thus a basic block or subprogram strict input variable is

Osterweil/Fosdick - 4

one which is referenced by the block or subprogram before all definitions
of the variable. A strict output is one which is defined for all control
paths within the block or subprogram. Since there is usually more than
one possible sequeﬁce of stateménts which may be executed in a sub-
program the modifier strict is used only when the indicated role applies
for every control path. Consider, for example, the subprogram in Fig. 1.
Focusing attention on the formal parameters only, the classification of
these variables for the subprogram would be: A - (SI,NO) ; SUM - (NI,O0) ;
N - (I,N0) ; FLAG - (NI,SO).

It should be noted that the input—oﬁtput classification for a variable
in a statement does not always contain the modifier strict. For example,
in the statement

CALL SERIES(X,Y,K,L)
analysis of the subroutine SERIES would produce the classification:
X - (SI,NO) ; Y - (NI,O) ; K - (I,NO) ; L - (NI - SO),

When a DO in Fortran is satisfied the index becomes undefined. This
situation is recognized by assigning a special output class, undefined (U).
For example, in the statement

READ (5,100) (X(K),K=1,5)
we have the classification: X - (NI,SO) ; K - (NI,U). This example
illustrates another aspect of the classification, namely a single
classification is used for all of the elements in an array. This has

obvious weaknesses which we will discuss later.

10

20

Osterweil /Fosdick - 5

SUBROUTINE SERIES (A,SUM,N, FLAG)
LOGICAL FLAG

IF(A.GE.0,.AND. A.LT.1.0) GO To 10
FLAG=.FALSE.

RETURN

SUM=0

DO 20 K=1,N

X=FLOAT (K)

SUM=SUM + 1.0/SQRT(A+X)

CONTINUE

FLAG=.TRUE.

RETURN

END

Figure 1: Example for classification of global

parameters

Osterweil/Fosdick - 6

Data Flow Anomalies Detected

Execution of a program involves input of data, the generation and
use of intermediate results, and output of data. This process takes
place as program contreol proceeds along an execution path. We are con~
cerned with the determination that the flow of data from input to output
during this process is consistent and meaningful. Accordingly, we focus
special attention on two types of events in the data flow:

Event 1: Referring to a variable which has not been assigned

a value on a path leading to this reference.

Event 2: Assigning a value to a variable which is not

referenced on a path leading from this assignment.

The presence of either of these events on an execution path is an anomaly
in the data flow, and is symptomatic of an error. An anomaly associated

with event 1 is called a type 1 anomaly and an anomaly associated with

event 2 is called a type 2 anomaly. A type 1 anomaly violates the

principle that a value must flow into a variable before it can flow out,
and a type 2 anomaly violates the principle that data which flows into a
variable should flow out. The viewpoint here is that there is a conserva-

tion principle to be applied to the data flow: it should be free of

sources and sinks, excepting data boundary points (READ's and WRITE's)

and violation of this principle is likely to be symptomatic of errors

in the program. It is evident that an observed violation of the conser-
vation principle may be traceable to any of a wide variety of common
programming errors: keypunch error, misspelling, statements out of order,
failure to initialize, incorrect label, incorrect use of parameters in a
subprogram reference, abuse of concealed data flows through subprogram

invocations, etc.

Osterweil/Fosdick ~ 7

It is to be carefully noted that we have defined anomalous data flow
in terms of events which take place along an execution path of the pro-
gram. The recognition of execution paths is exceedingly difficult, in
fact for arbitrary programs this problem is not decidable, We look
therefore at the control paths, which of course contain the execution
paths as a subset. Detection of either event on a control path may mean
that an anomaly is present but does not assure it. However, if an event
at some statement S is observed for all control paths leading to S, in
the case of type 1, or for all control paths leading from S in the case
of type 2, then one can be certain that the event is present on an execu—
tion path and certainty of an anomaly is established.

DAVE issues messages where the presence of data flow anomalies is
detected or suspected. These messages are in the form of warnings and
errors. We have put into the category of errors all those
situations which are certain to yield an illegal computation, while
warning messages are issued where only the possibility of an illegal
computation is established. In particular, observation of event 1 on
all control paths leading to a statement will cause an error message to
be issued, while a warning message is issued if the event is present on
some, but not all, control paths. We have decided to issue warning
messages when an event 2 is detected regardless of whether or not it
is present on all control paths. The reason for this is that event 2
does not seem to imply an erroneous computation in the same way event 1
does. An event 2 might just mean a superfluous computation has taken
place.

When one considers the complexity of the data flow which exists in
a program consisting of a number of subprograms, all using such features

as COMMON and EQUIVALENCE declarations, it is evident that the

Osterweil/Fosdick -~ 8

detection of all events is a difficult matter. The present implementa-
tion misses a small class of events 1 and 2 which will be discussed
later.

To illustrate these ideas and some of the difficulties, we look at
some examples. Consider first the input-output classification of local
variables for the statements in a subprogram. If on one of the control
paths from the entry node, the first use of a local variable is classified
(8I,°) or (I,-), then we have an instance of event 1. This is the case
for the variable K in Fig. 2 and Fig. 3. Moreover a type 1 anomaly is
certain in Fig. 2. In Fig., 3, however, a type'l event occurs only along
one of the two control paths. In this case DAVE issues a warning of a
possible type 1 anomaly. This is done because DAVE does not attempt to
determine which control paths are actually execution paths. Hence, allow-
ing for the possibility that the path on which the event occurs is not
an execution path, DAVE warns that a type 1 anomaly is possible, but not
certain, We observe that if we make the not unreasonable assumption
that every block of a program is executable, then it is possible to
devise an analytic procedure which would find both control paths of
Fig. 3 to be execution paths. In this case an error message - not a
warning - could be generated. In DAVE, however, we have not made that
assumption and have not produced the needed analytic procedures. If on
one of the control paths to an exit node, the last use of a local variable
is classified (-, S0) or (¢, g) then we have an instance of event 2. This
is the case for the variable L in Fig. 2 and Fig. 3. Again we have a
certain anomaly (type 2) in Fig. 2, and we have an event (type 2) only

on one of the two control paths in Fig. 3. For the same reasons as

discussed above DAVE can be certain of a type 2 anomaly in Fig. 2 and

Figure 2,

Figure 3.

Osterweil/Fosdick - 9

SUBROUTINE X(I,J)
J=2*K+T

L=T#%2

RETURN

END

Type 1 and type 2 anomalies on all control paths

SUBROUTINE X1(I,J)
IF(I.LT.0) RETURN
J=2#K+1

L=T%%2

RETURN

END

Type 1 and type 2 anomalies on some control paths.

Osterweil/Fosdick - 10

can only suspect the possibility of a type 2 anomaly in Fig. 3. As
noted earlier, a warning message is produced in either case.

Type 1 and type 2 anomalies arising in the data flow between
program units are more difficult to detect. In Fortran this flow takes
place through argument lists and common lists. Consider once again the
subprogram SERIES in Fig. 1. Recall that A was classified as (81, No).
If there is no definition of the actual parameter, A‘; used in place
of A on any path leading to an invocation of SERIES then a type 1
anomaly is present. DAVE will detect this situation and issue an error
message. If there are some paths (but not all) for which A' is not
defined then a type 1 event is present, a type 1 anomaly may be present,
and DAVE issues a warning. The parameter N was classified (I, No):
if there are any control paths leading to an invocation of SERIES on
which N' is not defined a warning is issued. Variables SUM and FLAG
were classified (NI, Q) and (NI, SO), respectively. If the last use of
SUM' or FLAG' on a path beginning with the inyocation and going to a stop

node was a definition then a warning is issued.

Osterweil/Fosdick - 11

The Structure of the Analysis Program

The structure of DAVE is indicated in Fig. 4. The subject program,
consisting of a main program and all subprograms referenced either
directly or indirectly is first preprocessed.by an adapted version of
BRNANL, a program analysis and instrumentation package [2]. 1t is
assumed that the subject program is a syntactically correct ANSI Fortran
program, however as noted below recovery procedures are possible when
illegal statements are encountered.

During this pass, the program is divided into program units
and these are divided into basic blocks and statements. State-
ment type determination is also made here. The preprocessed program is
then passed to a lexical analysis routine. This routine creates a token
list to represent each of the program's source statements. Clearly
knowledge of the statement type makes the job of the token list generator’
easier,

As the token lists are created, comprehensive data bases of informa-
tion about the various program units are also created. The data bases are
accessed using a data base creation and accessing package, designed to
facilitate data base restructuring [3]. Each subprogram data base contains
a symbol table, label table, statement table, and table of subprogramwide
data. The symbol and label tables contain much the same type of informa-
tion found in most compiler symbol and label tables, listing symbol and
label attributes as well as the locations of all references to the symbols
and labels. The primary purpose of the statement table is to hold the
input-output classification for every variable referenced or defined in
each executable or DATA statement. During this lexical scan phase it is

possible to determine the input-output classes of all variable references

Subject
Program

v
7/
/
Subdivided
gubject
program
W
. ~
.
S
Sy

7/
/
Token List
Representation
of subject
program
\
~
S
-
~

Recognize statements,
Divide program into
basic blocks

v

Lexical analysis.
Create Token List

N

Osterweil/Fosdick -~ 12

Correction
deck

v

Create data bases

for each subprogram
(statement table, label
table, symbol table,
subprogram-wide table)

—3 standard FORTRAN
K— statements and

Recovery from non-

missing subprograms

Data Base
System

rd

Sequential fileu

of data bases for
program units of

subject program

Determine leafs-up
reprocessing order,
program call graph

!

Perform leafs-up
reprocessing, generating
error. messages, warnings,
assertions, documentations

Figure 4. Structure of DAVE,

Osterweil/Fosdick - 13

and definitions except those in which variables are used as arguments

to subprogram invocations. DAVE contains the input-output classifica-
tions for ANSI Fortran intrinsic functions and basic external functions

so the input-output classes of variables used as arguments in these
functions are also determined during this phase. This determinable
input-output data is stored in the statement table. Blanks are placed

in the statement table for the input-output classifications of variables
used as actual parameters in subprogram (excepting ANSI functions) invoca-
tions; these blanks will be filled in during a later phase of processing.

The table of subprogramwide data for a given program unit contains a
list of all subprograms referenced by the program unit, as well as
representations of all non-local variable lists; i.e. the program unit's
parameter list and COMMON block lists. Ultimately the non-local variable
lists will be used to hold data about the subprogramwide input-output
behavior of these non-local variables. The external reference lists of
the various program units will be used to construct the program call
~ graph.

During this phase of processing statements which are syntactically
illegal under the ANSI standard may be encountered. Our system is
capable of pausing at this point and accepting a correction deck con-
taining replacements for the offending statements. In addition, our
system will examine the external reference lists to determine whether
all referenced subprograms have Been submitted. If not, DAVE will, at
this time, also accept new symbolic decks in order to satisfy such
unsatisfied external references.

In the next phase, DAVE builds and examines the program call graph.

Using the call graph, leaf subprograms (those with no external references)

Osterweil/Fosdick - 14

are identified. For such subprograms, the input-output classifications
of all variable references are already known, hence the input-output
classifications of all non-local variables can be made [4]. Hence the
input-output behavior of all variables used in all invocations of such
subprograms can now be filled in, enabling in turn determinations of
input-output classifications of non-local variables in other subprograms.
Using this scheme, all input-output classifications can eventually be
entered for all variables in all statement table entries in all program
unit data bases. This leafs-up subprogram reprocessing order (also
referred to as inverse invocation order by Allen [5]) is determined in
the next phase through analysis of the program call graph.

The final phase of processing is the most interesting. During this
phase, the program units ére reprocessed in the above-mentioned leafs-up
order. Missing input-out-put information is supplied, and global data
flow analysis is performed. It is at this time that events of types 1

and 2 in the data flow are identified, and data flow assertions are made.

Osterweil/Fosdick - 15

The Data Flow Analysis Phase of Processing

As already noted, the final phase of processing begins with the
analysis of leaf subprograms. The analysis begins with the construction
of a basic block table for the subprogram. This table holds input-output
information about all variables referenced in each of the basic blocks.
It is constructed from data in the subprogram's statement table.

Once the basic block table has been constructed, the input-output
classification of program variables can be determined through the use of
the algorithms already described by us [4]. The local variables are
analyzed first. An error message is generated for all local variables
which are found to be strict input for the subprogram, since this situation
implies a type 1 anomaly is certain. Correspondingly, local variables
found to be of type input cause the generation of a warning message. The
last usage of all local variables is also determined by means of an
adapted output category classification algorithm. If a local variable is
used last as an output, an event of type 2 is present and a warning is
issued.

The input-output classifications of the non-local variables are then
determined., These classifications are printed out, and also stored in
the subprogramwide table of the subprogram under study. Warning messages
are also printed for all parameters which are found to be non-input and
non-output, Clearly each of these items of data in the subprogramwide
table can be viewed as being an automatically generated assertion about
the subprogram. These assertions are useful moreover in producing docu-
mentation about the subprogram. This table is then copied into a master

data base, so that all invoking program units will be able to easily access

the data needed to classify the input-output categories of variables

Osterweil/Fosdick - 16

used as arguments in invocations of this subprogram.

In addition the system makes a special check of the usage of all
DO~loop index variables following satisfaction of their DO's. The
ANST standard specifies that the wvalue of the DO index becomes undefined
upon satisfaction of the DO (whether the DO is explicit or implicit).
Hence if the first use of a DO index following DO satisfaction is input
or strict input, a type 1l event is indicated and a warning message is
produced. These situations are detected by initiating an input category
determination trace for the DO index where the trace is begun with the
flow graph edge which represents the DO satisfaction branch.

The analysis of a non-leaf program unit is more complicated. Such
a program unit will, of course, not be analyzed until all subprograms which
it calls have been analyzed. At such a time, however, it is possible to
fill in all entries which had to be left blank during the creation of
the calling unit's statement table. Hence such blanks are filled
in. Certain Fortran semantic errors are also detected as this proceeds.
For example, a mismatch between the length of a calling sequence and the
length of the corresponding parameter list is detected here. Likewise,
at this point we detect the use of an expression or function name as an
argument to a subprogram whose corresponding parameter is either an
output or strict output variable. Both of these semantic errors can
also be viewed as data flow.anomalies,

A mismatch in parameter list lengths may be either a type 1 or
type 2 anomaly or both; erroneous use of an expression or function name
is art anomaly of type 2.

At this point in the processing illegal side effects, as defined by

the ANSI standard ([6], section 8), are also detected. It is easily

Osterweil/Fosdick - 17

seen that an illegal side effect is certain to occur if a single
variable is used within a single statement once as a strict input variable,
and a second time as a strict output variable (other than on the ieft of
an assignment statement). For example, in the statement

CALL SIDFKT (A+5.0, A, X)
where the first formal parameter in SIDFKT is classified as strict input
and the second formal parameter is classified as strict output. A warning
message is issued if either classification is non-strict.

Our system also exposes concealed data flows through subprogram
invocations. Concealed data flows Fesult from the use of COMMON variables
as inputs (or outputs) to (from) an invoked subprogram. Such situations
are easily exposed by examination of the COMMON block variable lists in
the subprogramwide table of the invoked subprogram. Because data flows
through such COMMON variables just as surely as through explicitly
referenced parameters, the statement table entry of such an invocation
statement is augmented by the input-output classifications of such
variables. This assures that the results of global input-output category
determination within the invoking program unit will be correct for these
variables. DAVE can also print out the names (those by which they are
referenced in the invoked subprogram) and usages of all the variables
which are used as inputs or outputs to a statement but are not
explicitly referenced. Such information seems most useful as a form of
automated documentation. It also seems to be useful as a debugging aid
in that it may alert a programmer to data flows which are hidden, perhaps
forgotten, and hence more prone to error,

The omission of a COMMON block declaration in an invoking program

unit presents a tricky problem. If the COMMON block is referenced in the

\

Osterweil /Fosdick — 18

invoked subprogram, then the variables named in the COMMON block may

or may not become undefined upon return to the calling program unit.
Undefinition will not occur provided that the COMMON block is defined in
some program unit currently invoking the program unit which omits the
COMMON declaration. In the absence of such a reference by a higher
level program unit, errors are possible. In particular, variables in
such a COMMON block which are strict output or output from the invoked
subprogram will become undefined - a type 2 event - and a warning is
issued. Variables in such a COMMON block which are strict input or inmput
can receive values only through BLOCK DATA subprograms. Hence a check
of the subprogramwide tables of such subprograms is made. If no data
initialization is found, a warning is issued.

If a COMMON block, B, is declared by a high level program unit
which invokes a subprogram, S, in which the block is not declared, then
the ANSI standard [6], sec. 10) specifies that B must still be regarded
as implicitly defined in S provided that some subprogram directly or
indirectly invoked by S does declare B. Hence data referenced by the
variables in B may flow freely through routines which do not even make
reference to B. As already observed, such data flows are noted and
monitored by DAVE. In addition, DAVE is capable of printing out the
names and descriptions of all COMMON blocks whose declarations are
implicit in a given subprogram. This, too, seems to us to be useful
program documentation. The algorithm for determining which blocks are
implicitly defined in which routines involves a preliminary leafs-up
pass through the program call graph and then a final root to leafs pass.

It is described in detail in [7].

Osterweil/Fosdick - 19

Only after all of the above described checking and insertion of
input-output data into the statement table has been done, does the system
proceed to the creation of the basic block table. As might be expected
the creation of the basic block table entry for a basic block containing
subprogram invocations is rather complicated. The algorithm must contend
with such problems as non-strict usage of variables, and references to
variables not explicitly named. This algorithm also is described in
detail in [7].

Once the basic block table is constructed, analysis of the variables,
explicit and implicit, proceeds as described in the case of a leaf
subprogram,

Subprograms are processed in this way until the main program is
reached., Processing of the main program is the same as the processing of
any non-leaf, except that COMMON variables must be treated differently.
Any COMMON variable which has an input or strict input classification for
the main program must be initialized in a BLOCK DATA subprogram. If
not a warning message (class is input) or an error message (class is strict
input) is issued. Similarly if a COMMON variable's last use was as an

output from a main program a warning message is issued.

Osterweil/Fosdick -~ 20

Conclusions

We have described the workings of DAVE, a data flow analysis
system, and have shown that this system can be used to detect errors,
produce assertions, and generate documentation about a program. We feel
that DAVE has demonstrated the usefulness of data flow analysis in
studying programs, and regard this as a first effort rather than a
finished product.

In DAVE, certain simplifying assumptions have been made, facilita-
ting our analysis, but often weakening our results. For example, DAVE
recognizes that variables may become undefined (e.g., upon satisfaction
of a DO loop, the DO parameter becomes undefined), but considers un-
defined to be an output class. However in the subprogram of Fig. 5,
I becomes undefined only on soﬁe control paths. It is strict output
on the others. We choose to consider I to be output (not undefined)
from subprogram SEARCH. Hence, even the possibility of a type 1
anomaly in subprogram INSERT (see Fig, 6) is undetected. This is
because no input analysis of I is initiated starting after the invoca-
tion of SEARCH in subroutine INSERT. ©No such search is indicated
because no variables in the invocation of SEARCH appear to have output
class undefined. Choosing to consider I to be undefined in the above
case leads to other undesirable imprecise analysis. Future revisions
of DAVE will allow a variable to be classified as any of non-undefined,
undefined or strict undefined independent of being classified as non-
output, output or strict output.

It should also be noted that DAVE does not detect all events of
type 2 in a program. DAVE's analysis focuses on the first and last

uses of program variables, but does not examine the pattern of

Osterweil/Fosdick - 21

SUBROUTINE SEARCH(VECT,I)

DIMENSION VECT(100)

DO 10 I=1,100

IF (VECT(I).EQ.0.0)RETURN
10 CONTINUE

RETURN

END

Figure 5. A subprogram in which I becomes undefined only on some
control paths and is output on others.

SUBROUTINE INSERT(VECT,DATA)
DIMENSION VECT(100)
DO 10 J=1,100
10 VECT(J)=J
I=100
CALL SEARCH(VECT,I)
IF(I.NE, 100)VECT (I)=DATA
RETURN
END

Figure 6. A subprogram expecting I to be a strict output from SEARCH

Osterweil/Fosdick - 22

intermediate uses. Hence no message would be generated in response to

a sequence of code like

even though there is a type 2 event along every control path containing
this sequence. We acknowledge that it is sometimes not unreasonable to
write code containing such type 2 events (see for example Fig, 7).

For completeness, however, we feel that all such events should be
detected. As already observed, an anomaly is to be regarded as a
symptom of error. Hence the final determination of the meaningfulness
and disposition of all messages produced by DAVE must be made by the
user. The user should therefore have messages about all detectable
anomalies.

We have already observed that we have simplified our work by
making no attempt at determining which control paths through a program
are execution paths. Consequently, our analysis of Figure 3 resulted
in the detection of a type 1 event on one of two control paths., We
reasoned that that path could be unexecutable, and hence issued only a
warning. On the other hand, if we had made the assumption that every
block of the program is executable, we would have been lead to the con-
clusion that the path must be an execution path. This follows from the
observation that no other control path includes the last sequential
block of the subprogram. Thus we could have been sure of the existence

of a type 1 anomaly. As noted earlier, the discovery of all execution

Osterweil/Fosdick - 23

SUBROUTINE TEMPLT(A,B,C,D,E,F,SWITCH, X)
LOGICAL SWITCH
SWITCH=. FALSE.
IF(X.GE.A.AND.X.LT.B)GO TO 10
IF(X.GE.C.AND.X.LE.D)GO TO 10
IF(X.LT.E.OR.X.GT.F)GO TO 20

10 SWITCH=.TRUE.

20 RETURN
END

Figure 7. A not unreasonable subprogram which, nevertheless, displays
a type 2 event on some control paths.

Osterweil /Fosdick - 24

paths of a program is impossible. Yet this simple example illustrates
that it is possible and worthwhile to identify some execution paths.

The identification described here was based partially upon the
assumption that all basic blocks of a subprogram are executable. This
assumption may be questionable, but we have already made the (question-
able?) assumption that all subprograms of a program are executable, for
we perform analysis and produce messages about all subprograms.
Probably the best solution to this dilemma is to produce a system which
can accept assertions from the user about whether or not all subprograms
and blocks are executable, The program analysis would then be guided by
these assertions.

DAVE also makes a simplifying assumption about the use of sub=
scripted variables. The analytic routines treat a subscripted variable
in the same way as a simple variable. Thus any reference to or defini-
tion of a single element of a subscripted variable is tantamount to a
reference te or definition of all elements. Because of this assumption
differences in input-output behavior between elements of a subscripted
variable will be lost, perhaps resulting in a blurred picture of the use
of the variable. For example in Fig. 8 the array A is perhaps best
thought of as consisting of two column vectors. The second column is
used as a strict output non-input vector. The first column is used as
a strict input non-output vector. In order for an invocation of
TBLMKR to be free of anomalies, column 1 of A should be initialized
before invocation of TBLMKR and column 2 of A should be referenced
after invocation of TBLMKR. DAVE currently, however, would treat A as

a simple variable, and assert that it is a strict input,strict output

Osterweil/Fosdick - 25

variable for TBLMKR. Hence, for example, DAVE would detect nothing
even suspicious about the subprogram of Fig. 9.

Here too we observe it is impossible to always correctly analyze
subscripted variable usage. In the case illustrated, however, the
difference in usages of the two columns of A is detectable because the
column subscript expression is always a constant. This does not strike
us as being an unusual situation. Although it is probably asking too
much to expect an analytic system to detect such situations, it seems
reasonable to produce a system capable of sharpened analysis of sub-
scripted variables based upon externally supplied assertions about
such things as subarray autonomy.

While it is evident that the data flow analysis currently employed
could be improved to provide sharper results, it is also evident that
there are practical limits to improvements that depend only on more
exhaustive analysis of the code. We beiieve that these practical limits
can be greatly extended by providing for the possibility of an inter-
change of assertions between the user and an analytic package such as
DAVE. Others [8] have suggested interactive systems for proving pro-
grams correct, and of course interactive debugging systems are reasonably
well known [9]. The kind of interactive system we are suggesting here
would lie somewhere in between; falling short of a proof of correctness
but being far more sophisticated than the usual debugging system.
Moreover, such a system would provide a powerful documentation and

testing tool.

Osterweil/Fosdick -~ 26

SUBROUTINE TBLMKR(A)
DIMENSION A(100,2)
DO 10 I=1,100

10 A(I,2)=A(T,1)%*2
RETURN
END

Figure 8. A subprogram in which different array elements have
different input-output uses.

SUBROUTINE SUMSQS (A,SUM)
DIMENSION A(100,2)
DO 10 I=1,100
10 A(I,2)=I
CALL TBLMKR(A)
SUM=0.0
DO 20 I=1,100
20 SUM=SUM+A(T,1)
RETURN
END

Figure 9. An anomalous invocation of TBIMKR which is not detected
by DAVE.

Osterweil/Fosdick - 27

References

Schaeffer, Marvin. A Mathematical Theory of Global Program

" Optimization. Prentice-Hall (1973).

Fosdick, L. D. BRNANL, A Fortran program to identify basic blocks
in Fortran programs. Report 40 (March 1974) Dept. of
Computer Science, University of Colorado, Boulder, CO.

Osterweil, Leon; Clarke, Lori; and Smith, David. A Fortran system
for flexible ereation and accessing of data bases. Report 52
(August 1974) Dept. of Computer Science, University of
Colorado, Boulder, CO.

Osterweil, Leon and Fosdick, L. D. Automated input/output variable
classification as an aid to validation of Fortran programs.
Report 37 (January 1974) Dept. of Computer Science, University
of Colorado, Boulder, CO. (Presented at Software II, Purdue
University, May 1974).

Allen, Francis E. Interprocedural data flow analysis. Report
RC4633(#20545) (November 1973) Computer Sciences, IBM Research,
Yorktown Heights, N. Y. (Presented at IFIP 1974).

Fortran, ANST X3,9-1966. American National Standards Institute,
Inc. 1430 Broadway, New York, N. Y. 10018.

Osterweil, Leon and Msdick, L. D. DAVE, A comprehensive data
flow analysis system for Fortran programs (in preparation).

Elspas, B.; Levitt, K. N.; Waldinger, R. I.; and Waksman, A. An
assessment of techniques for proving program correctness. ACM
Compt. Surv. 4,2 (June 1972), 97-147.

Rustin, Randall, ed. Debugging Techniques in Large Systems.

Prentice-Hall (1971).

Osterweil/Fosdick - 28

Appendix

At the time of this writing DAVE is being tested. We have con-
structed an example which illustrates some of the operating features
and messages generated.

The first part of the material below is a copy of the program being
analyzed with line numbers, statement numbers and block numbers shown at
the left. This material is output by DAVE for reference purposes. The
second part of the output is produced after the first phase of processing
is done. 1In this part of the output the processing order of the calling
graph is displayed. The third part of the output contains messages,
warning statements, and error statements resulting from the data flow

analysis described in this report.

Osterweil/Fosdick -~ 29

LINE STMT BLOCK SOURCE
1 1 @ COMMON /BLK/ Ss Rs XMAX, XMIN
e P z DIMENSION QC128), RCIFG,2)
3 3 ! READ(S5,18>1, S
4 4 ¢ 10 FORMAT(II1Z,F6.2)
5 5] CALL INIT(R,QsI)D
6 6 1 WRITECEs22)CQCII»J=15180)
7 7 @ o FORMAT(IGF&.2)
g 8 1 INTS=S
g e 1 IFCINTS.LE.@)
Q e 2 $INS=]
1@ 11 3 M=MA¥XMINC(RY*INTS
11 12 3 STOP
12 13) END
13 ! o SUBROUTINE INIT(A,VECTOR,I)
14 2 5 DIMENSICN ACI188),VECTRCIZE)
15 3 1 IFCI«LTe1.0ReI.GT-98)
15 4 2 $1=1
1€ 5 3 DO1g J=1s1 ,
17 6 4 10 ACI)=Jd*d=1@%(JIxJ/18)
18 7 5 IPI=1+1
1¢ g 5 IF(I.GT.C9)
19 o 6 $I=¢¢
20 1¢ 7 DO2¢ K=IP1.,1@¢
21 11 g 20 ACJI)Y=0
22 12) READ(S5,3@)YC(VECTR(J)»J=1,188)
23 13 @ 30 FORMATCIGF&.2)
o4 14 = RETURN
25 15 o} END
26 1 g FUNCTION MAXMINCR)
27 2 g DIMENSION RC18@)
o8 3 @ COMMON /BLK/RMAXs RMIN, DUMMY (26 1)
pete} 4 1 RMAX=R(])
32 5 1 RMIN=R(])
31 6] DO 12 1 = 1,100
32 7 2 IF(RMAX.LT.RCI))
32 8 3 SRMAX=R(I)
23 ¢ 4 IF(RMINSGT.RCID)
33 13 5 $RMIN=R(I)
34 11 6 16 CONTINUE
35 12 7 IF(RMAX.NE.RMIN)
35 13 @ SMAXMIN=RMAX~RMIN
36 14 9 RETURN
37 15 Y END

Osterweil/Fosdick - 30

1

i CALL GRAPH TABLE ENTRIES
@SUBPROGRAM NAME= SYSMAIN
PROCESSED AS ITEM NUMBER 1 IN THE INPUT FILE
EXTERNAL CALLS= 2
ZSUEPROGRAM NAME= INIT
PROCESSED AS ITEM NUMBER 2 IN THE INPUT FILE
EXTERNAL CALLS= @
NAMES OF CALLERS
SYSMAIN
BSUBPROGRAM NAME= MAXMIN
PROCESSED AS ITEM NUMBER 3 IN THE INPUT FILE
EXTERNAL CALLS= @
NAMES OF CALLERS
SYSMAIN ,
NEXT LEAF IS FILE ENTRY NUMBER 2
NEX¥T LEAF IS FILE ENTRY NUMBER 3

NEXT LEAF 1S FILE ENTRY NUMBER

o

Osterweil /Fosdick - 31

5] GLOBAL MESSAGES FOR PROGRAM UNIT INIT
g
@

e s Sk 3 sk ke sk ke e e sk sk ok Sk ok ok ok sk Sk ke ok sk s ke ok sk st sk Sk sk sk ke Sk sk sk sfe sk sk s s sk s sk s sk sk ok sk Sk sk sk ok ok ki sk sk okoke sk
sk RkWARNING &

@ A VARIABLE IN A PARAMETER LIST 1S USED FOR NEITHER INPUT NOR
QUTPUT. i

NAME OF VARIABLE VECTOR ;
***J
2 LOCAL MESSAGES FOR PROGRAM UNIT INIT

@

o
*********#**********#***%**,
skkokk kW ARNING .

] THE LOCAL VARIABLE NAMED VECTR RECEIVES A VALUE IN ITS
LAST USAGE.

ke e ok s sheske skl sk sk ke sk ek sk S st sl e sl st sl sk sk sk Sk sk SOk 3K ok S i ok sk ok sk sk sk o ok sk sk st st stk ke sk sk sk ok ok sk ok s e sk sk ki

@ ,

st ok e sk ofeok koo ook o ok ot e of o o s S St sk stk sk s ke sk ook ek etk sk skokoR sk stk skok ok skokokskorskskokoksokkokok R

*kskkx ERROR

& THE VARIABLE NAMED J BECOMES UNDEFINED (FALLING THROUGH .
STATEMENT NUMBER £, YET TC ATWAVE ITCTT MIITMmmammmm ma soes s T

ék GLOBﬂLﬁﬂﬁﬁﬂﬁﬁgSnFQRWPBQQRQM UN;T MAXMIN

o «

@

******************************$************$******$******$*****$*
sk AW ARN ING

o s FUNCTION NAME IS NOT ALWAYS ASSIGNED A VALUE.
a NCTION - MAXMIN
*m**Ziii*zi*iz***
) 1.OCAL MESSAGES FOR PROGRAM UNIT MAXMIN
CLASSIFICATION OF PARAMETER AND COMMON VARIABLES
SUBROUTINE INIT
PARAMETERS/ENTRIES
ORDER NAME INPUT CLASS QUTPUT CLASS
! A NON STRICT
2 VECTOR NON HON
3 I STRICT QUTPUT

80 ® -

]

ORDER

ORDER
1
2
3

Osterweil/Fosdick - 32

CLASSIFICATION OF PARAMETER AND COMMON VARIABLES

FUNCTION MAXMIN
PARAMETERS/ENTRIES
NAME INPUT CLASS
MAXMIN NON
R STRICT
COMMON BLK
PARAMETERS/ENTRIES
NAME INPUT CLASS
RMAX NON
RMIN : NON
DuUMMY NON

OUTPUT CLASS
OUTPUT
NON .

CUTPUT CLASS
STRIET '
STRICT
NON

G aH; -

Osterweil/Fosdick -~ 33

GLOBAL MESSAGES FOR PROGRAM UNIT

2 st ofe sfe s e s sfe ok ot S e ke s sl sk skt e s sk sk sk st sk sk st sk ok sk stk siesk sk Aok s ok sk sk sk ok ok e sk sl sk ok ek K
STATEMENT WNO. 5 BASIC BLOCK NO.

THE PARAMETER LISTS ARE OF

dokkkkWARNING
CORRESPONDING ARGUMENTS IN
DIFFERENT DIMENSIONALITY.

CALLING SUBPROGRAM CALLED SUBPROGRAM

SYSMAIN INIT
ARGUMENT PCSITION i 1
NUMBER OF DIMENSIONS 2 1
NAME OF ARGUMENT R A
KIND OF ARGUMENT IDENTIFIER
INPUT CLASS NON=-INPUT
STR.CUTPUT

CUTPUT CLASS
ek sk sde e ok ok sfe e sfe s ol sk Sk e sk sk sie sk skesde sleole sk sk st ok ok ok sk sk vk sk st ok ok sfe sk e ke sk sk s ol ok s stk ke ke sk ok s sk ok ok ofe sk ok ok ke ok ok

@
e sfe sk sfe i e ok ok ok sk sk sk e sk sk e ok shode stk kst sk s skosk okoske sk ol R Sk ol R sk e sk ol Sk s 3k i S s s sl sl s sk s sk ok sk ok kol sk sk okok
1

dokokkAWARNING STATEMENT NO. 5 BASIC BLOCK NO.

CORRESPONDING ARGUMENTS IN. THE PARAMETER LISTS ARE OF

2
DIFFERENT DIMENSIONALITY.
CALLING SUBPROGRAM CALLED SUBPROGRAM
SYSMAIN INIT
ARGUMENT POSITION 2 2
NUMBER OF DIMENSIONS 1 &
NAME OF ARGUMENT Q VECTOR
KIND OF ARGUMENT IDENTIFIER
INPUT CLASS NON=-INPUT
NON-QUTPUT

CUTPUT CLASS
e e she o e sk ok s sl o s s sk s s sl sl sk s she sk sk ok sl sk s sk sk ke ke sl sk sk stk sk sk sk sk sk Sk sk Sk sk sk sl Sk s sk sk sk ok ok sk sk ke sk

]
e e sk e e e e ol ok ok sk ok sl st i st sk skt sk sk s sl sk ke ke sk sk st sk sk st sfe e ke sk ok sk sk skl stk stk sl st sfe st st skl ok Skok ko
kHckkkARNING STATEMENT NO. 11 BASIC BLOCK NO. 3

z CORRESPONDING ARGUMENTS IN THE PARAMETER LISTS ARE OF
DIFFERENT DIMENSIONALITY.

CALLING SUBPROGRAM CALLED SUBPROGRAM

SYSMAIN MAXMIN
ARGUMENT POSITION: 1 !
NUMBER OF DIMENSICONS 2 !
NAME OF ARGUMENT R R
KIND OF ARGUMENT IDENTIFIER
INPUT CLASS STRe INPUT
NON-QUTPUT

OUTPUT CLASS
st sk otk s st e st sk s skl st st oo sk stk sk skt sk sk sk ok stk st et stk sk sk skeok sk sk stk sk ok stk ook sk ok ok Rk oK

@ - L
st e e Sk 3 e she ke o s s ke ook o o ok ok e R Sk KK koK SR 3k sk sk ok e e skl st sk s ok sk sk sk s s ke s ok ok ol Sk sk ok ok Skl sk ok 3k 3Ok

Osterweil/Fosdick - 34

sotskeox W ARN ING STATEMENT NO. 11 BASIC BLOCK NO. 3

2 A POSSIBLE ILLEGAL SIDE EFFECT HAS BEEN DETECTED. AN
ARGUMENT PASSED BY THE CALLING SUBPROGRAM (VIA PARAMETER
LIST OR COMMON) IS ALTERED BY THE CALLED SUBPROGRAM AS AW i
INDIRECT CONSEQUENGCE OF THE CALL.

CALLING SUBPROGRAM CALLED SUBPROGRAM

SYSMAIN MAXMIN
COMMON BLOCK NAME BLK BLK
NAME OF ARGUMENT R
INPUT CLA&SS STR. INPUT
QUTPUT CLASS NON-QCUTPUT STR. QUTPUT

****ﬁf***************#***********%ﬁ********#******************‘ﬁ****

@ LOCAL MESSAGES FOR PROGRAM UNIT

@

&
*********x****#**
koo ARN ING

] THE 1L.OCAL VARIABLE NAMED I RECEIVES A4 VALUE IN ITS
LAST USAGE.

she e she ok sk o s ok o sk sk o ke sfe sk s s sk sl o sk sk sfe ke sk she sk e s e ske ok sk ok sk i e oK e ok sk e sk s ke sk sk v sie e ke sk steske sk sk ksl ofe sk ksl ok ok

@

she e sfe ok she 3k sl sk ok sk s ok sk 3 sk o ok ok sk sie ok s sk sle sk sk s sk skl Sk sk she ol sk s sk e sk sfe sk sl sk sk S Sie sie sl S e e sfe ok sk Sk o sk sk ok e e sk ok

Sk kWARNING

& THE LOCAL VARIABLE NAMED INS RECEIVES A& VALUE IN ITS
LAST USAGE.

**************w***********************x*********#*******#*$***$$*

)

St sk sk ok sfe st sk sk ok sk sk sk sl s sk Sk ok ke ol e sl s ok sk sk st sk sk sk s ok s st s sk sk sfe sk s sk ke sk sk ke sk sk sk sk ok sk ot e sfe ok ok sk stk sk ek

Aokl kWWARNING

@ THE LOCAL VARIABLE NAMED M RECEIVES A VALUE IN ITS
LAST USAGE.
e e ke s e st s sfesfe st sfe st s o ek sk s sfe st e s el ok ok s st sheofe s sk sk sl e sfe ek sfe ok ok s ke sfe sk sk s i sk sk sk sk sk sk st st st sfe ook ke kokoR 3

1 CLASSIFICATION OF PARAMETER AND COMMON VARIABLES

% COMMON BLK

7 PARAMETERS/ENTRIES w

ORDER NAME INPUT CLASS OUTPUT CLASS

1 S NON STRICT -
2] R NON STRICT
3 KMAX NON NON
4 KMIN NON NON

