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PROPAGATING MODES ON A BURIED LEAKY COAXIAL CABLE

by

Steven W. Plate, David C. Chang and Edward F. Kuester

1. Introduction

The problem of wave propagation along a buried, insultated wire has
long been associated with long distance communication at very low and
extremely low frequencies (VLF and ELF).[I] Operating at long wavelengths,
the wire is usually very close to the earth surface, say within one or two
skin-depths so that the interaction between the wire and the air-interface
plays an important role in determining the propagation constant of the current
waves supported by the wire structure.lz] More recently, buried wires
operating at the higher end of the radio spectrum, 100 MHz for instance,
have also found important applications as wave guiding structures in the
design of groundwave radar detection systems either for vehicle monitoring
or perimeter surveillance. These wires again have to be placed close to the
earth surface in order to avoid umnecessary loss into the surrounding earth
as well as to enhance area coverage. In many practical applications, leaky
coaxial cables, either in the form of braided wires or periodic slots in
the outer sheath, are used to allow electromagnetic waves to leak out
continuously from the coaxial region into the surrounding medium. It is
apparent that the characteristics of the propagating modes supported by
such a waveguiding system would have to be influenced by the air-earth

interface. The purpose of this report is to investigate such an influence.



A related problem concerning an elevated wire structure above earth

[3.4,9,12] It is found that a bare

surface has been studied extensively.
or a dielectrically-coated wire usually supports two distinct modes.

One of the two modes has a field structure more concentrated between the
wire and its image and approaches the conventional transmission-line mode in
the limiting case of a perfectly-conducting earth. Such a mode is referred
to as structure-attached. The second mode, however, is more spead out over
the air-earth interface, much like a groundwave field guided along the
direction of the wire. This mode is then referred to as surface-attached.
Although the two generally exhibit very different properties, both propa-
gation constants are very close the wavenumber in air, and degeneracy of

the two can occur when the wire parameters are properly chosenllz]. The

result of our investigation indicates that such a phenomenon does not

exist in the case of a buried wire, however.

2. The Modal Equation

Consider an infinitely long thin cable of exterior radius a buried
in the earth at a depth h parallel to the z-axis. The earth,region 1,
(x > 0) 1is assumed to be nonmagnetic, having the refractive index

n, = (Erl + icllmso)% and region 2, the refractive index n In this

1 2°

problem, region 2 usually represents free space which means that n,

reduces to unity; however, n., is left arbitrary for generality. All

2
field quantities are assumed to vary as exp(iukoz -iwt) where o is the
yet undetermined, complex propagation constant of a discrete mode. The
geometry of this problem is iliustrated in Figure 1. We further assume

that the cable is thin compared to the depth at which it is buried (a <<h)
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Figure 1, Geometry of the problem



and to the wavelength in region 1 (koaln1| <<1 where ko = w(uoeo) ).

This implies that the current on the cable will be virtually only z-directed
and will be ¢-independent. The corresponding modal equation for propagating
modes supported by the wire structure is then found by assuming a current I
on the cable, calculating the average z -directed E-field on the exterior
surface of the cable due to the current I, and then enforcing the boundary
condition Ez =1Z(a) where Z(a) is the surface impedance defined at the
surface of the cable. All of the dependency on the internal structure of
the cable is contained in the surface impedance Z{a). The resulting modal

equation is given in [3] and [4]:

M) = M_(0) + due 2 (a.)/kg =0 (1)

where

2,20 00(1) (1) : 20 (0
M) = DY @ a) - Y @ ml spn cafees @)

2 d exp(—uIH]
P(a;H)= = f dX (3)
1im u, + u
. 17 M
Qa:H) e b @)
a;H) = = B
? o im 2 2
0 nzul +n1u2.
2 2.%
u, = (x -cl) ; -Tf2 < arg u, < /2 (5a)
u, = (2 -gg)* ;  -1/2 < arg uy < 1/2 (5b)
.2 2.k _ :
Cl = (n1 -0 ) 3 0 < arg Cl < ‘ (6a)
co=m?-a®); oc<cargr < (6b)
2 2 ’ Z arg &

A=%xa; H=2kh
0 o



Here, Hél)(x) is the Hankel function of the first kind and of order
zero. We note that the arguments Cl o are chosen so that the fields

L]
found in the derivation of (1) are bounded at infinity in the transverse

direction. The arguments of u are chosen so that all of the integrals

1,2
converge everywhere in the complex \-plane. While equation (1) is appli-

cable to a class of thin-wire structures[ll’[T] we are specifically
interested in the application to a leaky coaxial line composed of a center
conductor of radius ¢ and refractive index n; a dielectric insulator

around the conductor of index n a thin uniform metal braided sheath of

b’

radius b and transfer impedance 2 and a dielectric coating around the

T;
sheath of index na_ and radius 4 as shown in Fig. 2. Provided the amount

of leakage is small, the surface impedance can be found by calculating the
quantity

E, (p,a)

Z(a) = (7)

2ﬂpH¢(p,a)
p=a

when the cable is driven by an axially symmetric source, where Ez is
the g-directed electric field and H¢ is the ¢-directéed magnetic field.
According to Wait [5], Casey [6] and Wait ahd Hill [7], this transfer

impedance is given by

2(@) =z (@) + Zp()[Zy(a) + Z,(@)]/[Zp(@) + Z, (o) + Z, ()] (8)

where
2 2.,2
2 ) (na -0 )ko a o
2@ = e e W@ (92)
o] a
2 2..2
2@ - ot b (9b)
(¢ 3 = 3 z n{—
b Zwleownb c
iz k J (Z.k c)
zi (U.) - w O JO(CWkOc) (10)
2wce _wn 1w o
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Figure 2. Cross section of a leaky cable and its
equivalent circuit representation



The equivalent circuit representation of (8) is also shown in Fig. 2.

We note that Za,b in the case represents respectively the series impedance
due to the dielectric layer between a and b, and between b and c;

Zi is the internal impedance of the inner conductor, and ZT is the
shunt transfer impedance of the braided sheath. For a highly conducting
inner conductor Zi(u) reduces to

ik0 Jo(nwkoc)

Z. =
i Zﬂce&nnw Jl(nwkoc]

(11)

which is then independent of «o.

The transfer impedance of the braided sheath is given in [5] to be

-ikiLT u2
2™ =~ O -—5—73) (12)
o o n o+ 0y

where LT is the transfer inductance. It is particularly noteworthy that
the total surface impedance as defined in (8), is a function of the
propagation constant o . Furthermore, it is easy to show that denominator

of (8) may be rewritten as

2

(2, (@) + 2, (@ + 2)) = 2' (0% - o) (13)
where 2
ik L
S S BN Y T ]
Z = ZTTEOUA[HZ 2n(c} * ,(nz ) 2) (14)
b oy nb

) nﬁ (ni +n§) [uoﬂ,n (b/c) + LT + i2'lTZi/0J]
al = (15}

[(n2 + ndu gn(b/c) + meLy]

3



This shows that the Z(0) has a pair of poles at a = taz . As will
be shown in a later section of this report, these poles have a strong

influence on the location of one of the roots of the modal equation.

3. Approximate Expression for the Integrals P(a;H) and Q(o;H)

The integrals P(a;H) and Q(a;H) as given in (3) and (4) may be
computed numerically in order to find the roots of M(a). This can be a
time consuming process considering that M(a) must be evaluated several
times for each root found. It is desirable to find approximations to
P(c;H) and Q(o;H} that are valid in the regions of interest and are more
efficient to compute than direct numerical integration. These approxima-
tions may also be used to find limiting forms of M(a) in special cases.

In [8], approximations to P(a;H) and a slightly different form of
Q(a;H) are found that are valid in the region |c1| << |§2|. This corre-

sponds tp o in the neighborhood of n Any root in this region would

1
be highly attenuated, so even though roots may exist in this region, they
are not extremely important. Instead, we attempt, in Appendix A, to find
approximations that are valid in the region ICll >> |C2|, because any
mode found in this region has a relatively low attenuation. The approxi-
mations need only be valid for |n1|H < 1 because the cable usually is
placed within a skin depth of the surface in order to insure sufficient

penetration of the wave into the air region. In such a situation we

have shown in Appendix A that P(¢;H) can be approximated by

—L > [4(1 - 15 ) + (£, H/2N) 20 (2,72 )] exp (it H)

in(g,H)

P(a;H) =

(1) (1)
+ 2 (g - 2 g/ ), (16)
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Qg(a;H) = 2 exp(—ulpH){ﬁn 2 —En(«icz] - (uzp/Ap][ln(-iuzp—ikp) _ln(-Cz)]}

(22)

5 3
2% 2 3:1) is the Schwarz

Y a2 .
Where ulp - ()\p "cl) and uzp = (AP -Cz) [

or Lipschitz-Hankel integral defined in [12] as

z
ﬂél)(a,z) = I exp(iat)Hgl)(t)dt
]

and can be computed from a series expansion given in (A.23). Ein is the modified
exponential integral given in [10] as
o k
Ein(z) = - } L-2)
k=1 kk!)

Finally, the logarithmic function &n(z) is specified by its principle
value. It should be noted that the behavior of Q'(a;H) given in (19)
is not singular at a = Op, and its value at oy may be found using
(A.27b), (A.36b) and (A.40b). However, the first term in (18) does contain

2,-%

explicitly the term (az -GB) 50 that the expression of Q(o;H) will

blow up when o = ag.

4. Classification of Modes

Because the leakage of a braided cable is usually very small (i.e.
qu<uo/ko)it is logical to view the propagating modes of a buried leaky
cable as resulting from coupling of modes between the coaxial cable and the
external waveguiding system of a buried and insulated wire located near
the earth surface. Thus, by inserting (8) and (13) into (1), the modal
equation can be rearranged to reflect such a viewpoint:

(az -aé)[Mo(a) + (4w50/k§)Za(a)] + Afa) = 0; (23)
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where
_ 4weo ,
Alp) = —2—)[25(@) * 2,112, @)/Z (24)
K i
o
and |A(@)] <<1 because ZT is assumed to be small, For simplicity,
we let Ziﬁx) = 0 so that the center conductor of the leaky coaxial is
perfectly conducting. As is evident in (23) and the definition of ZT
in (12), if we now let the transfer inductance of the braid L, approach

T
zero then we have o = @, = I, which obviously corresponds to the TEM-
mode of a coaxial line with inner and outer radii ¢ and b. Provided
the leakage remains small, we can find the solution of the modal
equation by perturbation; the zeroth-order solution is g = az; the
first-order solution is found by inserting o, for a in Mo(u), Za(a)
and A(a); the second-order solution is found by inserting the first-
order solution in Mo(u), Za(a) and A{a); etc. Similar to the TEM-mode
in a coaxial line, we expect the current in this case to be almost equal
and opposite on the inner conductor c¢ and the inner surface of

conductor b. Such a mode is designated as a bifilar mode. On the other

hand, other acceptable solutions of (23) when A(a) + 0 may be found from

/kﬁ)z (@) = 0 (25)

M, (@} + (due a

o]

which obviously represents the modes supported by an insulated conducting
wire, or a Goubau-line buried near the earth surface, and with a surface
impedance of Za‘ As shown in [2], such a line supports at least one
mode with a known propagation constant in the low frequency limit. The
current is now highly concentrated on the outer surface of conductor b,

and consequently, the mode is designated as a monofilar mode. Obviously,
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the value of o may be found again from a perturbative scheme based
upon a zero-order solution obtained from (25).
In addition to the monofilar mode, it is known that a second mode

near g = also exists in the case of an elevated Goubau-line in air

®p
and located near the earth surface [9], [12]. Mathematically, the
occurrence of this mode is heavily influenced by the inverse square-root
singularity of the Q-integral in the modal equation; such a singularity
is displayed explicitly in the approximate form of Q given in (18).
The dominance of the Q-integral also means physically the field distribu-
tion of such a mode will be much more spread out along the air-earth
interface than that of the monofilar mode, and consequently, is designated
as a surface-attached mode. In Appendix B, it is shown that this mode
indeed can exist for a sufficiently small buried depth H, but may cross
the branch cut (Re@uz - ag)% = 0} and become an improper mode for a
larger H.

Before we present the numerical evaluation of modes for a general
case, another special case of interest is when the wire is located at
the air-earth interface. Consider the limit as H approaches zero,
while keeping the ratio A:H sufficiently small so that the thin wire
approximation continues to hold. If we keep the relative cable geometry
the same then the transfer impedances Za(a), Zb(a), ZT(u), and
quantity Z' will remain constant. We will again assume that
Zi(u) is zero for simplicity. The two Hankel functions in the

expression for Mo(a) in (2) diverge individually; however, their
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difference approaches a constant, By taking the limit as H approaches
zero in (16} and (18) we find that both P{a;H) and Q(o;H) diverge

logarithmically, Hence in this limit Mo(a) becomes

2 2
. n, +n
Mo(a) - 41§n(HJ2 l: 1 - 2 az] (26)
'rr(n1 + n2)

By inserting (26) into (23) we find that we can neglect Za(a), Hence

we obtain

9 2 (n +n j\ [1ﬂ(n +n2)1

(@ - o) A(a) (27)
4 4n H

As H approaches zero the term on the right side of (27) vanishes so in

this 1limit, the value of ¢ for the monofilar mode reduces to
22, ,,.%
= [(n] + n,)/2]

which agrees with the well-known result obtained by Coleman [11] for a

thin-wire located in the air-earth interface.

5. Numerical Results

We have developed a computer program to compute the roots of the
modal equation (1). This program computes P{a;H) and Q(o;H) either by
direct numerical integration of (3) and (4) or by the approximations
given in section 3. Unless specified otherwise, the refractive index
of the earth is taken to be n = 5.3 + i0.95, and for the air n, = 1.0.
The frequency is f =100 MHz, and the dimensions of the cable in
reference to figure 2 are: a=1.15cm; b=1.0cm; c¢ = 0.4 ¢cm. The

braid inductance is LT = 40 nH, and the inner conductor is assumed to

be perfectly conducting so that Zi = 0. The refractive index of the
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coating was n, = 1.449 which corresponds to Teflon. The insulator
refractive index was varied from n, = 1.0 to 1,449, and the depth at which
the cable was buried was varied from h=0,1m to 1.0m. The skin depth
of the earth is about 0.5 m so that the root locations should be
relatively independent of h when h > 0.5m. In all cases, we found
two and sometimes three distinct roots for any given set of parameters.
The first mode is a bifilar mode in which the currents on the inner
conductor and the braid are approximately equal but have opposite signs.
This mode has the least attenuation of any of the modes since the fields
are concentrated on the inside of the cable. The location of this root
tended to follow a, when the value of n, was changed. A plot of the
location of this mode as a function of h is given in figure 3.

The second mode is the monofilar mode in which almost all the current
is on the braid, so this mode is similar to the case of a buried coated
wire. A plot of the location of this mode is given in figure 4. Note
that this mode has an attenuation of about 12 to 15 dB/m. Although it
is heavily attenuated along the line, such a mode has the major part of
field distribution located outside of the cable and, hence, is capable
of interacting with surrounding objects in earth.

The third mode is the surface attached mode which has its fields
concentrated near the interface between the air and earth. As shown in
figure 5 this mode only exists for certain values of h. For h > 0.34 or
h < 0.19m, the root crosses the branch cut onto the improper Riemann surface
in the complex o plane. The mode becomes improper in these cases and is
absorbed in the surface wave radiation. Even when this mode does exist

it is located very close to the branch point o, given by (17) . For

B
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this reason the fields of this mode will he very similar to the ground
wave fields which are spread out along the entire surface.

The accuracy of the approximations to P(a;H) and Q(o;H) was determined
by comparing the values of the roots found using the approximations to the
values obtained using the numerical integration. For the bifilar mode
at h=0.1m the values of the roots agrees to within 10_5 and at h=0.1m,
they agreed to within 8 x 10'5. For the surface attached mode the roots
agreed within 10_9 for all values of h. For the monofilar mode the
approximations gave completely inaccurate results except for very small h

say h <.0lm, because the assumption that |c1| >>|g,| is no longer valid

in the region where o of this mode is located. Thus, onlydirect numerical

integration is used in this case.
6. Concluding Remarks

In this report we have investigated the roots of the modal equation
for a leaky coaxial cable buried in a lossy earth. We have found that
three distinct modes do exist for most cable depths of practical interest.
We have given perturbation formulas to locate the roots of two of these
modes.

0f the three modes the bifilar mode is probably the easiest mode to
excite since the fields are similar to a TEM mode in a lossless coaxial
cable. This mode has the least attenuation but also has only a small
amount of field penetration into the air region because the total current
on the cable is nearly zero. The surface-attached mode has more field
strength in the air for a given amount of current on the inner conductor
than the bifilar mode. For this reason, such a mode is ideally suited for
the design of a groundwave detection system. But since the location of

this mode is close to the branch point at a = Gp, ORE may not be able to
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excite such a mode independently without substantial surface radiation.
The monefilar mode has fields concentrated in the earth region so that
this mode is highly attenuated,

From the above discussion it is quite obvious that there are several
conflicting considerations in the design of a wave guiding system for
detecting anomalies (or intruders). On the one hand, the bifilar mode is
easy to excite and once excited, it is capable of propagating along the
line with least amount of attenuation. However, its field distribution
is highly concentrated to the interior coaxial region so that it is not
particularly sensitive to anomalies located above the earth surface. On
the other hand, the monofilar mode suffers higher attenuation and the
surface-attached mode can not be excited easily. The question then is
how to bring about an optimized system which provides the best compromise
to these conflicting considerations. To this end, it may be useful to
first define a performance index of a specific mode as

p1.=—b (28)
PTIm(Ol)

where @
g = J |En|2dy is the integration of the magnitude square
[+ ]

of the vertical electric field component along the earth
surface at a given cross-section;
p is the total amount of time-average power flow across the

same cross-section;
Im(a) is the imaginary part of a or the attenuation constant.
Although such a definition is not at all unique, it is reasonable to assume

that the set of parameters that yields the highest performance index

according to (28) provides the "optimum" design for a detection systenm,



In Appendix C expression for the field components for each discrete
mode are given. However, the actual computation and intercomparison of
the performance indices of various modes will be presented separately in

a supplemental report at a later date.
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Appendix A

In this Appendix, approximate expressions are derived for the
integrals P(o;H) and Q(a;H) under the assumption that |g1| >> |g2| and
|n2]H < ]n1|H < 1. It is easy to see from (3) that the main contribution

to the P-integral comes from the range of A where u, can be approxi-

2
mated simply by A. We therefore divide the integral in (3) into two

parts,

P(o;H) = Plﬁu;H) + Pz(a;H) (A.1)

where Pl(a:H) represents the dominant contribution, i,e,,

[+2]

4 exp(—ulH)
P (o:H) = — | —————  dx
1 imw u. o+ A
0 1
) @ -ulH
= Ikexp(-ulﬂ)dk - f u,e di
ST 0
which is known analytically to be
_j_c
P (asH) = —2 Lo+ Llexptic,m
1 . .2 H 2 1
ing H
i
(1) _2 LM
+ ZHO (;lﬂ) Clﬁ Hl (;1H) (A.2)
The remainder term Pz(a;H) is now given by
vy L 4 ! 1
P2 (O‘-sH) = RJ ;l_u FETI u +}L] eXP(-ull'I)dl (A-S)
ol 1 2 11
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Note that the term in the brackets decays as A3 for large XA so the
important part of the integral where A is small., For H small enough
the exponential term is constant for X less than some Ao so the exponen-
tial term may be replaced by its value at A = 0 for the integration of A
between 0 and AO. Since the integrand decays as A—S for large A ,

the integration from Ao to « 1is insignificant even without the exponen-
tial decay. This allows us to let Ao approach infinity without affecting
the results, The exponential term is replaced by its value at A = 0
instead of unity so that Pz(a;H) remains small when compared to Pl(a;H)
as n, approaches infinity. Hence Pz(m;H) is approximately

A

i 1 1
P,(a;H) = +— exp(iz,H) lim f [ - ‘] dA
2+ im ' Y e u; +u, u1+l
o o
22 |
imN
where N2 - ni - ng , and the principal branch of the logarithm is chosen.

Substituting (A.2) and (A.4) into (A.1l) yields

2 2.2
4 . t%" %2 :
POt = —f [1-ig + 25— (2 fexpairym)
iﬂCIH 2N* 1
(0 2 M
s P - g | (A.5)

This approximation for P(a;H) is valid for |c2| <<|;1| or for H|;1| << 1,
In the latter case (A.5) may be further approximated by using the small

argument expansion of the Hankel functions to obtain

2.
. . 2. i L
Post) = 2 [n(g M) + y-tn 2] +1- 2. ;2 n (\E%) (A.6)
.
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where ¥ = 0.577216 1is Euler's constant. The result given in (A.6)
agrees with the approximate formula derived earlier by Chang and Wait in [2].
On the other hand, by multiplying and dividing the integrand by the

factor niu2 - nzu the integral Q(u;H) as given in (4) may be rewritten

2°1°
as
2 n’y n’u
2 2
QoiH) = —5— J e exp (-u, H)dA (A.7)
im(ny -n) 4, AT Al
where
2 2%
Ap = (aB -a’)
_ 2 4pa2t
= (; - nZ/n ) 0 < arg AP <T (A.8)
; = (ni + ng)% 0 < arg n< w (A.9)
ap = n1n2/n (A.10)

The integrand in (A.7) appears to have a pair of poles at l=:tkp, the
location of which are a function of . According to [8] the discontinuity
of the residue calculation at A = lp when Ap crosses the real axis causes
a branch cut in the g-plane of Q(a;H). In addition, Q(o;H) becomes
unbounded as o« approaches the branch point op because hp tends to zero
and the integral in (22) does not converge when Ap equals zero.

In order to insure that the poles do exist, the numerator in (A.7)
needs to be evaluated at ) = lp’ and verified that it is non-zero there.
In the physical case that region 1 is the earth and region 2 is air,

the following relationships hold:

arg n, > arg n o> arg n, > 0 (A.11)

1

Under these constraints it can be shown that
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_ - 3 2.
ul[ LT ulp = 1n1/n (A.12)
A—AP

I1f in addition we can assume that

arg n> 2 arg n, (A.13)
then it can also be shown that
u . (A.14)
2 2p 2 '
A=)
p
Using (A.12) and (A.14) the numerator of the integrand of (22) is
evaluated at A = AP to be
2 2 . 2.2,
nju, - nyu, = 21n1n2/n (A.15)
A=)
p

which is non-zero, hence the integrand does have poles at A = thp. Note
however that the relationship (A.13) may not always hold if both regions
1 and 2 are lossy, in which case the sign in (A.14) should be reversed
and the poles would disappear.

An approximation for Q(o;H) will now be found in which the singu-

larity at o = o, is accounted for exactly. In addition the approximations

B

will have the proper limit as :2 approaches zero, or as H approaches

zero. Rewrite (A.7) as

QasH) = ——2— {- njQMasH) + n2Q, (osH) + n2Qy(a;H)} (A.16)
1ﬂ(n1 -nz)
where

oo ul

Q, (a;:H) = fz—z-exp(-u H)dA (A.17)
A% 1

oo P
Q,(asH) = 2 JE—ZJ-‘—E exp(-u H)d} (A.18)

A=A

o P
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H u, -A
Q301;H) = 2J Az o exp(-ulﬂ)dk (A.19)

[++]

The integral Qluu;H) is evaluated as follows.

32 > exp(—uIH)
Q (:H) = = f 73— @
BH - 00 (u]. ‘ulp)ul
— ﬁf__{q (a;H,u, ) - Q.. (ash,-u,_}} (A.20)
2u1p 3H2 11 lp 11 4 .lp
where
Qp (osHyu ) f Gpepey &

bl

* lexp(- (u)-u; JH) - 1]
= exp(-ulpH) f (“1'u1p)u1 di
=)
dA
, [ _A
(u,-u, Ju
w 1Tl
H * exp(-ulﬁ)
= exp(—ulpH) -I exp(ulpt)J ™ dA dt
o

- OO

4]

+[ . J dA
EARCECI I TR
© "% =

1

) s (1 iT
exp( ulpH) 1WIH exp(ulpt)Ho (Clt)dt b
. © P

dA
+u ——-
1p [ 2 42
(A 'Ap)ul 4

(A.21)

In order to evaluate the finite integral in (A.21) we can use the

incomplete Lipschitz-Hankel integral or Schwarz function which is defined as
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Z
He(l)(a,Z) = J exp(iat)HéI)(t]dt (A.22)
0

This function may be evaluated using the following expansion [6]

m!

| © .om
i@, = 2¢uP @) ] B ¢ @)
) m=0
+ ZH(I)(Z) { an® (@), | (A.23)
m=0 (m+1)!
where Cm(a) is given by the recursion formula

Co(a) = 1; Cl(a) = af2; C (z) m+1 [mCm Z(a) +a ], m> 2

The infinite integral in (A21)has been evaluated in [9] to yield

" dA 2i im 2 2.
= S + [@E; -2 ~ix] - tncg
J (232 2u, \)(cf aht ] 2 S S 1

(A.24)

where the principal branches of the 2n terms are chosen, and the square
roots have positive real parts.

Using (A.22) and (A.24) we can write Qllta;H’ulp) as

. _ -im (1) 'iulp .) im
Q_ll(a,ﬂ,ulp) = eXp(-ulpH) Cl Hé ( T ,CIH + T

2u,  Jin 2 2% l
+ 22 347 * @l - ) -in) -an clj (A.25)

We obtain Qll(a H, -uy ) by replacing u1p with "ulp in (A.25). We
2.%

may then substitute iu for (Cl -A ) . By inserting these expressions

1p

into (A.20) and differentiating, we obtain the following expression for

Q, (a3H)
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imu
Q (o3H) = Q' (@3H) + —2 exp(-u, H) (A.26)
1 1 AP 1p
where

1 O = 2C1 p -ulp e (- Cl * Cl )

imu iu

1p 1) = 1p . (1)
+ zzl exp(ulPH)He ( Cl y ClH) + 1ﬂHo (CIH]
u

_ip - iu ~iA ) -
£ Ap [exp( ulpH) + exp(ulpﬂ]][ln(lulp 1Rp] n Cl]
(A.26a)

The second term on the right side of (A.26) contains all of the

singular parts of Ql {o,H) near the branch point aB. At a = op, Ql (a,H)

is finite and reduces to

Qi(aB;H) = iﬂﬂgl)(iulpﬂ) + ulpﬂwﬁfl)(iulpﬂ) (A.27)

The integral Qz(a;H) may be evaluated as follows:

Q, (a3H) = 2[ *EA——Q—- exp (~u, H)d)
u, -u
o 1 T1p
1 a - -
= qp_ {QZZ(a’H’ulp) - QZZ(G;H: ulp)} (A°28)
where
0
Q,,(a;H,u, ) = [ - exp (~u,H)dx
22 1p up - 1

oo [++}

exp(-ulpHJf exp(ulpt) J Aexp(-ult)dk.dt (A.29)
0

1}

This last step is valid only if Real(ul—ulp) >0 for all A . This is true

if Real(-icl —ulp) > 0. We will derive an expression for sz(a;H,ulp)
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assuming that o is in the region in which the above inequalities hold.
We will then analytically continue the resulting expression for all values
of a . Note that this problem does not exist in the derivation of

‘g, - >
sz(a,H, ulp) because Real(ul-rulp) 0 for all A and all o.

Doing the A integration in (A.29) yields

o0 "it-.;
Qi ) = expCouy i [t—l ‘ t%] exp[(iz) + u, )elde
H
1 _—
= g exp(lclH) + ulp exp(-ulpH)El(H[-lcl ulp]) (A.30)

EI(Z) and Ez(Z] are the exponential integrals of order 1 and 2 respectively

[9]. Alternately EI(Z) may be expressed as
E () = Ein(Z) - #n(2) -y (A.31)

where Y 1is Euler's constant (=0.577216), and Ein(Z) is an entire

function which has the expansion [9]
P k
Ein(z) = - § (B (A.32)
k=1 :

Inserting (A.31) into (A.30) we obtain an expression for

QZZ(G;H,UIP) = %—exp(iclﬂ) + ulp exp(—ulpH)Ein[H[-ir;1 -ulp])
- ulp exp(4u1PH)[£n H-*zn(—igl —ulp) + v] (A.33)
= %-exp(iglﬂ) + ulp exp(-ulpH)Ein(H[—ic14ulp])
_ Uy, exp(-ulPH)[znl{— £n(-i;1-+u1p] + ¥]
-2 uLpexp(-ulpH)zn(-iAP) (A.34)



29

The only singularities in (A.34) are the branch cuts due to the
square root in %y and the logarithm of Ap, hence this- form is the proper
analytic continuation for all o.

Inserting (A.34) and (A.33) with -u,_ substituted for u,_ into (43)

1p 1p

we obtain the following expression for Qzﬁx;H)
Q(a:H) = QyasH) - 2 exp(-uy Wan(-iA) (A.35)
where

Q@) = exp(-u) WEin(H[-18) -uy 1) + expluy MEin(H[-iL; +u, I)

- [eXP(-UlpH) + eXP(uIPH)][ﬂn(H) + Y]

+ [exp(-ulpHJ - exp(ulpﬂ)]!?»n(-ic1 +u ) (A.36a)

1p

Qé(a;H) has a logarithmic singularity at o = o due to the last term
in (A.35). Qéﬁx;H) has no singularity at & = &, and may be evaluated at

this point to obtain

Q) (agsH) = exp(uy H)Ein(2u) H) - [exp(-uj H) + eXP(umH)][%n(H) +Y]

+ [exp(—ulpH] - exp(ulpﬂ)]ﬁn(2u1p) (A.36b)

The integral QS(G;H) may be rewritten here as

exp(—ulﬁ)
dr (A.37)

2
Q(asH) = -2 I
? 2Jo (un) ()\-Z-A; )

From this expression it is apparent that Q301;H) vanishes as Cz approaches
zero. The integral also converges even when H is set to zero whereas both

Ql(a;H) and Qz(a;H) diverge logarithmically as H approaches zero.
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We therefore expect the major part of the integration to come from the
region near the poles ikp in the complex A-plane. Since the integrand
decays as A'3 for large A , we will approximate QS (o;H) by replacing the
exponential term by its value at A = lp. Hence Qs(a;H) becomes

o

u2 - A
Qsﬂx;H) = 2 exp(—ulpH) J ;5_:;? di
° AO- P ‘XO oo
= 2 exp(-ulpH) lim I g;—- [ éﬁkz + ugp J ___Q%___E
ld¥”~o 2 o A ~AP "5 uz(h -kp)
I
=2 exp(—ulpH){zn(Z) - zn(-igz) + Qn(-ilp)
u2 .
" §P [ dg - (A.38)
_muz(k -AP]

The infinite integral in (A.38) is given by (A.24) with %y substituted
PR

2 . .
for gy We may also replace (;2 - lp) with -1u2p 50 that Qsom;H)
becomes
, i'rru2

sta;H) = Qq(a;H) + —X;_E'- 2 2n(-1AP) exp(-ulpH) (A.39)

where
i X
Q;(a;ﬂ] = 2 exp(—ulpH) n(2) - an(-ig,) - X—E{Qn(-luzp-lkp)-nn(-cz)]

P
(A.40a)

Qg(u;H) does not have a singularity at g = op and may be evaluated at

this point to obtain

Q(agsH) = 2 exp(-uy H)[in(2) - gn(u, ) - 1] (A.40b)



The logarithmic singularity at o = 0p in the last term of (A.39)
will exactly cancel the singularity of QZGx;H) in (A.35). By inserting

(A.26), (A.35) and (A.39) into (A.16) we may write Q(u;H) as
2.2 2

4i 1121'11 inlﬂ
Qo;H) = ————— exp(——) + Q' (a;H) (A.41)
Apn(nl-nz) n
where
Q' (@;H) = ——3— {-n2Q](@;H) + n2Qj(aH) + niQj(05H)}  (A.42)
iﬂ(nl-nz)

Qi, Q;,, and Q; are defined in (A.27), (A.36) and (A.39) respectively.
It should be noted that Q'(a3;H) is not singular at a = ap and its value

at this point may be found using (A.27), (A.36b), and (A.40b).
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Appendix B

In order to demonstrate that a surface-attached mode may exist in
the buried cable problem, we first insert (18) into (1) and (2) to yield
an alternative form of the modal equation as

4io|.2n2n2 exp(inZH/ﬁ)

12 1
A= i
2

- (B.1)
p n(ni -1

VM @) + due 2 (0)/K2]
where

W@ = @CadEDem 1P eml s rem - @m 6.2

and Q'(a;H) is defined in (19). The right side of (B.1) is a smooth
function of o near aB, SO we may insert aB for o and calculate lp.
We may then calculate ¢ using the expression

2 2 2 _22,.2 2 2 ,
a =0a 'Ap_nlnzfcnl'i'nz) "A.p (B.S)
This value of o may be inserted back into (B.1l) to recalculate a more
accurate value for o .
The imaginary part of lp must be positive, so that if the right
side of (28) has a negative imaginary part then the mode does not exist.

We have found that this depends on the value of‘H. In the limit as H

approaches zero, (B.1) atg = aB reduces to
4 4
A, = ! ~ 2. 2f
Poiml-nd)@m] »npma G M@t o (B4
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1f ]nll is greater than [n2| and they satisfy the condition that
argl; > 2 arg n, then the right side of (B.4) has a positive imaginary
part. So for very small H a root of the modal equation exists that is
close to a = Op As H 1is increased, this root may or may not exist
depending on the imaginary part of the right side of (B.1). In all cases,
as will be shown in a later section, when the root does exist it is very

close to a = aB.
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Appendix C

In this Appendix, expressions for the fields of the discrete modes
are given. To be consistent with the thin wire approximation, all
higher order terms of koa are dropped. Generalizing the results of [ 3]
we can express the fields in terms of the z-components of the electric

and magnetic Hertz potentials to obtain

E (x,y,0) iko[aaﬂl,zlax *n, BVi’Zlay]
Ey(x,y,a) = iko[aaUl’z/BY - N, 3V1,2/8x]

_ 2
EZ(X,YsG] - al’z kO U1’2 .

) 2
Hx(x,y,a) 1ko[u3V1,2/3x - (“1,2/“0)3U1,2/3Y]

. 2
Hy(x,y,a) = 1ko[aavl’2/8y + (“1,2/“0)3"1,2/3"]

2
ovl,z

k

2
H, (x,y,0) 21,2

The subscript 1 is used for the earth region (x > 0} and 2 is for the

air region (x < 0), see Figure 1. The potentials are found in [1] or [2]

to be
2 2
_n I C _& _"; %
Uy (y,0) = i TH(E )[Clko((x—h)2 +y9) ]—; H(E )[glko((xm) +y%) ]
4§1k n 7'
(8] 1 1
[+ 4]
2 1 0;2 )
T [ulw2 T 2 2 J exp(-u k (x+h) -iAk y)dx
n,u. + n.u
o 172 271
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o]
in T [ ) 2 ]
U, (x,y,e) = - exp(-u.k h +u_k x-idk _y)dA
2 2 u,+u 2 2 10 20 0
Zﬂkocz w 1 2 nlu2 + nzu1
al ! 1 “i A
Vl(x,y,a) = 5 [ [P reratii i] = exp(-ulko(x+h)-ikkoy)dl
Zﬂkocl A 1 72 nlu2 + nzu1 1
ol 1 1 A .
v, (x,y,0) = J [: - j}— exp(-u.k h +u k x -ik y)di
z Zwkocg o u1“"2 n%u2 +n§u1 u1 1o 2o °

In these expressions 1 is the total current on the cable. U1 2 and :1 2
L »

are defined in (5) and (6).
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