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Bent-core liquid crystals have attracted intense interest in recent years, exhibiting a wide 

variety of novel structural phenomena involving the interplay of chirality, molecular bend and 

molecular tilt. Freeze-fracture transmission electron microscopy together with other experimental 

methods has been used to characterize the nanostructures of bent-core liquid crystal phases in 

which the molecules undergo complex self-assembly, forming, for example, helical 

nanofilaments (the B4 phase), disordered focal conics (the DC phase), and layer undulations (the 

B7 phase) in the bulk. These studies have helped us better understand the complex nature of 

these and other liquid crystal phases. For example, the investigation of the chirality-preserving 

growth of the helical nanofilaments in the B4 phase will allow better control of its growth for 

applications, the discovery of the quasi-ordered toric focal conics of the DC phase at the 

air/liquid crystal interface opens the way for the development of two-dimensional or even three-

dimensional periodic dielectric media for photonic crystal applications, the study of layer 

undulation defects reveals the detailed molecular arrangement in the B7 phase, and the discovery 

and characterization of the randomized twist grain boundary phase broads the understanding of 

chiral liquid crystal phases.  
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Chapter 1 

Introduction 

 

1.1  Liquid crystal phases of rod-like molecules 

        Liquid crystals (LCs) are a state of matter which has properties between those of a 

conventional liquid and those of a solid crystal. For instance, liquid crystal may flow like a liquid, 

but its molecules may be oriented in a crystal-like way. In the early days, liquid crystal phases of 

rod-like molecules have been intensively investigated. If the molecules are achiral, on cooling 

from the isotropic, the four most common liquid crystal phases formed in rod-like molecules are 

shown in Figures 1.1.1a-d, respectively.  

        If the molecule is chiral which means that there is a chiral center with four different groups 

and the molecule loses the mirror symmetry, the phases usually shown in rod-like molecules are 

denoted as N*, SmA*, SmC*, where the molecular packing of each phase is shown in Figures 

1.1.2a-d, respectively. There are distinct differences between the molecular packing of liquid 

crystal phases made of achiral rod-like molecule and that made of chiral rod-like molecule. In the 

N* phase, the chirality of the molecules makes the twist of the director more favorable. In the 

SmA* phase, the molecular pack is the same as that of the SmA phase. However, with the 

application of electric field, only the SmA* phase shows the electroclinic effect, where the 

molecules tilt away from the layer normal linearly proportional to the electric field when the 

strength of the electric field is small. For the SmC* phase, there is macroscopic polarization 

perpendicular to the n-z plane, and the phase is ferroelectric in thin cells. 
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        From the previous discussion, we know that chirality plays an important role in the property 

of the liquid crystal phases. The symmetry of achiral rod-like molecule is C∞h. When the achiral 

rod-like molecules are arranged in the SmC phase, the symmetry of the SmC phase is C2h. The 

symmetry of chiral rod-like molecule is C∞. When the chiral rod-like molecules are arranged in 

the SmC* phase, the symmetry of the SmC* phase is C2. Here we will show why polarization is 

allowed in the SmC* phase but not the SmC phase, using symmetry argument (which is 

important in analyzing the property of liquid crystal phases) [1]. In the x-y-z coordinates (shown 

in the inset of Figure 1.1.1d and the inset of Figure 1.1.2d), there is a C2h symmetry along y-axis 

in the SmC phase, which means the system stays the same under the symmetry operation. For the 

two fold rotation along the y-axis, we have 

቎
P୶
P୷
P୸
቏ ൌ ቎

P୶ᇱ
P୷ᇱ

P୸ᇱ
቏ ൌ ൥

െ1 0 0
0 1 0
0 0 െ1

൩ ቎
P୶
P୷
P୸
቏, 

that is  Px=-Px=0, Py=Py, Pz=-Pz=0. For the mirror reflection where the mirror plane is 

perpendicular to the y-axis, we have 

቎
P୶
P୷
P୸
቏ ൌ ቎

P୶ᇱ
P୷ᇱ

P୸ᇱ
቏ ൌ ൥

1 0 0
0 െ1 0
0 0 1

൩ ቎
P୶
P୷
P୸
቏, 

that is Px=Px, Py=-Py=0, Pz=Pz. Combining these two results, we get Px=Py=Pz=0, which means 

that polarization is not allowed in the SmC phase by symmetry. For the SmC* phase, the 

symmetry along the y-axis has reduced to C2. The mirror plane perpendicular to the y-axis has 

been broken by the chiral nature of the molecules. Under the symmetry operation of the two fold 

rotation along the y-axis, we have 

቎
P୶
P୷
P୸
቏ ൌ ቎

P୶ᇱ
P୷ᇱ

P୸ᇱ
቏ ൌ ൥

െ1 0 0
0 1 0
0 0 െ1

൩ ቎
P୶
P୷
P୸
቏, 
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that is Px=-Px=0, Py=Py, Pz=-Pz=0. Thus, in the SmC* phase, polarization is only allowed along 

the y-axis, which is always perpendicular to the n-z plane. 

 

 

Figure 1.1.1: A simplified sketch of the four most common liquid crystal phases of achiral rod-
like molecules. (a) Isotropic (Iso) phase. (b) Nematic (N) phase. (c) Smectic A (SmA) phase. (d) 
Smectic C (SmC) phase.  
 

 

 

Figure 1.1.2: A simplified sketch of the four most common liquid crystal phases of chiral rod-
like molecules. (a) Isotropic (Iso) phase. (b) Nematic* (N*) phase (Cholesteric phase). (c) 
Smectic A* (SmA*) phase. (d) Smectic C* (SmC*) phase. 
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1.2  Liquid crystal phases of bent-core molecules 

        Liquid crystal phases of bent-core molecules have been intensively investigated during the 

recent years, since the first discovery of ferroelectric in achiral bent-core molecules [2]. As we 

have discussed in section 1.1, macroscopic polarization is not allowed in the SmC phase of 

achiral rod-like molecules, because the C∞h symmetry of the molecule and the C2h symmetry of 

the phase. However, for bent-core molecules, because of the bent molecular shape, the symmetry 

of the molecule is C2d. When the achiral bent-core molecules are arranged in tilted smectic layers, 

the symmetry of the phase is only C2, which is the same as that of the SmC* phase of chiral rod-

like molecules. Thus, for bent-core molecules, even though the molecules are achiral, the tilted 

smectic layers can be chiral with polarization along the layer plane.  

        The bent-core liquid crystals exhibit a wide variety of novel structural phenomena involving 

the interplay of bent-core, molecular tilt and polarization. When the molecules are tilted, the 

bent-core serves as a chiral center, breaking the mirror symmetry and enabling polarization 

perpendicular to the n-z plane. Thus, in any chiral, polar phase of bent-core molecules, the 

molecules are tilted. As shown in Figures 1.2.1a and b, the SmAPF phase is polar, but since the 

molecules are not tilted, there is still a mirror plane, ߪv, and the phase is achiral. When the polar 

molecules are tilted, the mirror symmetry is broken and the phase is chiral, as shown in Figures 

1.2.1c and d. Molecular tilt is an unavoidable consequence of the broken symmetry. It is 

universal in any chiral phase of bent-core molecules. Different combinations of the tilt and 

polarization directions give the four common smectic phases in bent-core molecules: SmCAPA, 

SmCSPS, SmCAPS, SmCSPA [3]. 
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Figure 1.2.1: The interplay of bent core, molecular tilt and polarization in the liquid crystal 
phases of bent-core molecules. (a) The SmAPF phase and its mirror image (b). The two states are 
indistinguishable and the SmAPF phase is polar but achiral. (c) The SmCSPF phase and its mirror 
image (d). The SmCSPF phase has no mirror symmetry and the two states can not be 
superimposed. The SmCSPF phase is therefore polar and chiral. The red dashed line is the 
reflection plane. 
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1.3  Layout of the chapters 

        The interplay of molecular bent core, molecular tilt and polarization has induced a wide 

variety of novel structural phenomena, unique in the bent-core molecules. In this thesis, we will 

focus on the microstructures of the liquid crystal phases of bent-core molecules. However, 

microstructures of other interesting systems will also be described.  

        Before characterizing the characteristic microstructure of each liquid crystal phase, in 

Chapter 2, we will first describe some experimental methods which are commonly used to 

characterize the liquid crystal phases. Useful information on the liquid crystal phases can be 

obtained from each experimental method. However, combining of all these methods can give a 

better image of the liquid crystal phase being studied.  

        The B4 helical nanofilament phase, which is the most complex hierarchical self-assembly in 

soft matter and the first bent-core liquid crystal phase showing macroscopic chiral structure [4], 

will be discussed in detail in Chapter 3. We will first demonstrate the chirality-preserving growth 

of the B4 nanofilaments and then the pre-transitional orientational ordering of rod-like molecules 

in the helical nanofilament random network. In contrast to the helical nanofilament in the bulk, 

achiral surface structure of the B4 phase is also observed, due to the confinement of flat surface. 

Finally, possible applications of the B4 helical nanofilament phase will be discussed.  

        The dark conglomerate (DC) phase is another phase showing macroscopic left- and right-

handed chiral domains, which are made of disordered focal conic domains [5]. In Chapter 4, we 

will describe the quasi-ordered toric focal conic arrays discovered in the DC phase at the 

air/liquid crystal interface. Following this, we will emphasize the importance of studying the free 

surface structures of the liquid crystal phases, by analyzing the free surface structures of the B4, 
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B7 and DC phases. Thereafter, investigating free surface structures is incorporated in the 

following chapters when characterizing the microstructures of the liquid crystal phases.   

        The B7 phase of bent-core molecules is the phase which shows the most beautiful, fantastic 

optical texture. Polarization-modulated layer undulation has been clarified in the B7 phase [6]. In 

Chapter 5, we will further discuss the microstructure of the B7 phase by analyzing the defects 

observed in the B7 layer undulation. At the end, we will briefly discuss the optical texture of the 

B7 phase and a model is proposed to explain the observed B7 texture. 

        In chapter 6, we will discuss some microstructures discovered in the low temperature chiral 

phase (the liquid crystal phase is stable at room temperature and is supposed to be the B4 phase), 

including the achiral B4 structure of P-12-OPIMB which coexists with the helical nanofilament, 

the enhanced formation of helical nanofilament of W513 in the mixtures with 8CB, and the 

disordered B4 phase (or the low temperature DC phase) of W624. 

        Recently, an interesting chiral phase was discovered in a hockey-stick like molecule, which 

will be characterized in Chapter 7. This chiral phase, which shows macroscopic chiral domains 

under decrossed polarizers, appears below a SmA phase and is followed by crystallization. This 

behavior is different from the DC phase which appears below isotropic or the B4 phase which is 

stable at room temperature. FFTEM images reveal that the bulk structure of this chiral phase is 

made of smectic blocks, oriented in different directions, a structure mediated by defects between 

different blocks. By analogy with the twist grain boundary phase, we call this new phase the 

randomized twist grain boundary phase. 

        In Chapter 8 we will summarize all the other microstructures studied (ones not mentioned 

anywhere else in the thesis) and this chapter will also serve as a gallery of the microstructures of 

the other liquid crystal phases (ones not mentioned anywhere else in the thesis).  
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Chapter 2 

Experimental Techniques 

 

2.1  Introduction 

        In the study of liquid crystal phases, there are several commonly used experimental 

techniques, such as differential scanning calorimetry, x-ray diffraction, depolarized transmission 

light microscopy, freely suspended film, freeze-fracture transmission electron microscopy, 

nuclear magnetic resonance and so on. All these experimental methods are powerful tools for 

characterizing the liquid crystal phases. On the other hand, there is no single experimental 

method which can fully characterized the liquid crystal phases, and each experiment method only 

focus on some particular property of the liquid crystal phases. Only a combination of all these 

methods can give a clear, unambiguous picture of the liquid crystal phases investigated. As most 

of the experimental techniques have been described in detail somewhere else, here we only give 

a brief description of each method and focus on what information we can obtain from each 

method and how we can analyze the liquid crystal phases from those experimental results.    
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2.2  Differential scanning calorimetry (DSC) 

        DSC is a thermoanalytical technique in which the difference in the amount of heat required 

to increase the temperature of a sample and reference is measured as a function of temperature. 

Both the sample and reference are maintained at nearly the same temperature throughout the 

experiment. Generally, the temperature program for a DSC analysis is designed such that the 

sample holder temperature increases linearly as a function of time. The reference sample should 

have a well-defined heat capacity over the range of temperature to be scanned. The basic 

principle underlying this technique is that when the sample undergoes a physical transformation 

such as phase transitions, more or less heat will need to flow to it than the reference to maintain 

both at the same temperature. By observing the difference in heat flow between the sample and 

reference, differential scanning calorimeters are able to measure the amount of heat absorbed or 

released during such transitions. With DSC, one is able to observe very subtle phase changes, 

such as glass transitions. Thus, DSC is the one of the most common technique used to detect the 

phase transitions of the liquid crystal materials, as it is possible to observe the small energy 

changes that occur due to phase transitions. The type of phase transition can sometime be 

determined from the DSC peaks. Usually, for first order phase transition, the DSC peak is sharp 

and strong, while for second order phase transition, the DSC peak is broad and weak. DSC scans 

are also good for determining the change of phase transitions when materials are confined in a 

finite volume [1]. Advanced DSC, such as high sensitivity DSC [2 ], is also powerful in 

characterizing the phase transition. 

 

  



11 
 

2.3  X-ray diffraction (XRD) 

        X-ray diffraction is based on the elastic scattering of x-rays from the electron clouds of the 

individual atoms in the system. Bragg’s law gives the angles for coherent scattering from the 

lattices of those atoms. X-ray diffraction can be carried out on unoriented liquid crystal phases, 

where the materials are filled into a glass capillary by capillary force and then cooled to the 

desired temperature for the liquid crystal phase. Sometimes, in order to achieve direct, actual 

structural information, x-ray diffractions are performed on macroscopically well oriented 

samples, for example, for characterizing the cybotactic nematic phase [3]. For liquid crystal 

phases, we usually divide the x-ray reflection peaks into two categories: small angle x-ray 

reflection peaks (q~0.2 Å-1), which are usually the coherent scattering peaks from periodic liquid 

crystal layers or periodic liquid crystal lattices (for example, the hexagonal lattice for some 

columnar liquid crystal phase), and wide angle x-ray reflection peaks (q~2 Å-1), which are 

usually the constructive scattering peaks from intralayer molecular packing.  

        Besides the conventional x-ray diffraction, some advanced x-ray scattering methods have 

also been used to explore the structure of the liquid crystal phases in detail, for example, the 

unambiguously identification of the SmCα phase using resonant x-ray scattering [4].  

        For our XRD experiments, XRD experiments on powder samples were carried out using a 

Huber four-circle goniometer on beamline X10A of the National Synchrotron Light Source at 

Brookhaven National Laboratory. This beamline uses a double-bounce Si monochromator and a 

Ge 111 analyzer to obtain a wavevector resolution dq=0.0005 Å-1 full width at half maximum. 

Powder samples were in 1 mm diameter glass capillaries in a temperature controlled chamber. 
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2.4  Depolarized transmission light microscopy (DTLM) 

        DTLM is one of the most popular tools used to characterize the liquid crystal phases and 

phase sequences. By cooling down the sample from isotropic, we can observe the optical texture 

of each liquid crystal phase and the change of optical texture when the sample undergoes a phase 

transition. Because most characteristic liquid crystal textures are associated with their unique 

molecular arrangements (or liquid crystal lattices) and corresponding defect structures, by 

analyzing the liquid crystal texture, people sometimes can immediately determine the type and 

the structure of the phase. However, this requires some experience with the optical texture of 

each liquid crystal phase, and thus, we refer the reader to a useful book on this subject [5].  

        Here we present an example of analyzing the liquid crystal phase based on the optical 

texture. As shown in Figure 2.4.1a, the liquid crystal phase is characteristic of the focal conic 

texture, with dark brushes parallel to the polarizers. The cell geometry is shown in Figure 2.4.1b. 

As we know, in typical focal conic domains, the layer normal is axially outwards from the center, 

as shown in Figure 2.4.1c. In any regions, where it’s dark under crossed polarizers, the principle 

optical axis in that region is parallel to the polarizers. In the case of Figure 2.4.1a, the dark 

bushes are along the layer normal, indicating that the principle optical axis is parallel to the layer 

normal everywhere in the focal conic domains. Base on this conclusion, where principle optical 

axis is parallel to the layer normal, we propose that the phase can only be either smectic A phase 

(including De Vries phase) or smectic CA phase.  

        In order to further characterize the molecular arrangements in this liquid crystal phase, an 

electric field is usually applied to the cell to study the electro-optic behavior of the phase, as 

shown in Figure 2.4.2a. The dark brushes rotate about 45° with respect to the polarizers, 
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indicating that the principle optical axis is 45° tilted with respect to the layer normal in the focal 

conic domains, as modeled in Figure 2.4.2b. Though we can unambiguously determine the 

molecular arrangement in those focal conic domains under electric field, there are still two 

possibilities for the ground state of the phase, the De Vries phase and the smectic CA* phases. We 

will show in the following section that by observing a freely suspended film the ground state of 

the phase can further be identified. 

 

 

Figure 2.4.1: DTLM image of the liquid crystal phase under crossed polarizers without electric 
field and the model. (a) DTLM image of W639, a chiral, rod-like molecule, without electric field 
under crossed polarizers at T=90°C. (b) Cell geometry with one example of tilted, rod-like 
molecule. (c) Layering of the focal conic domains. 
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Figure 2.4.2: DTLM image of the liquid crystal phase under crossed polarizers with electric field 
and the model. (a) DTLM image of W639, a chiral, rod-like molecule, with electric field under 
crossed polarizers at T=90°C. (b) Layering of the focal conic domains and the corresponding 
molecular arrangement with electric field. 
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2.5  Freely suspended film 

        Because many liquid crystal phases form smectic layers, freely suspended film of those 

liquid crystal phases can easily be made, by drawing the materials across an opening. Those 

freely suspended films are assumed to show the bulk property of the liquid crystal phases, as 

there is no influence from the surface anchoring such as in the cell, and are widely used in liquid 

crystal studies. The freely suspended film by itself is an interesting system, as it is on the border 

line between 2D and 3D systems. A lot of interesting phenomena have been observed in this 

system, such as the crossover between 2D and 3D fluid dynamics [6] and the layer by layer 

phase transition [7].  

        Following the optical texture study in section 2.4, here we will analyze the freely suspended 

film of the liquid crystal phase. As shown in Figure 2.5.1a, under an in-plane electric field of 

E=55 V/mm, there is odd-even effect with slightly decrossed polarizer and analyzer, where odd-

numbered layers with lateral polarization orient perpendicular to electric field (dark regions) and 

even-numbered layers with longitudinal polarization orient parallel to the electric field (bright 

regions). The net polarizations along the molecular longitudinal and lateral directions in odd- and 

even-numbered layers are shown in Figure 2.5.1b. Usually, air induces polarization at the 

air/liquid crystal interface, for example, with net polarization pointing along the molecular long 

axis [8]. This kind of longitudinal polarization is smaller than the lateral polarization and become 

weaker away from the interface. In even-numbered layers, the lateral polarization canceled out, 

there is only net longitudinal polarization and molecules align parallel to the electric field. In 

odd-numbered layers, the lateral polarization dominates (no net longitudinal polarization) and 

molecules align perpendicular to the electric field. By including this observation, we can now 

conclude that the ground state of W639 studied here is SmCA*. 
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Figure 2.5.1: Odd-even effect observed in the freely suspended film of the anticlinic, 
antiferroelectric phase. (a) The odd-even effect in the freely suspended film of W639 at T=88°C. 
(b) The underlying molecular arrangements of the odd-even effect.  
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2.6  Freeze-fracture transmission electron microscopy (FFTEM)  

        Freeze fracture transmission electron microscopy (FFTEM) is one of the most powerful 

tools to directly visualize the microstructure of the liquid crystal phase. FFTEM experiments 

were carried out by sandwiching the sample between 2 mm by 3 mm glass planchettes (Figure 

4.6.1a, which were previously cleaned using detergent and then acetone but are otherwise 

untreated), and then cooling from the isotropic or heating from the crystal phase to a selected 

temperature of the liquid crystal phase, the phase being confirmed by optical microscopy. The 

samples were then rapidly quenched to T<-180°C by immersion in liquid propane, fractured in 

vacuum at -140°C, and then coated with 2 nm of platinum deposited at 45° and then with 25 nm 

of carbon deposited at 90°. After dissolving the liquid crystal, the Pt-C replicas are placed in the 

TEM, where the topographic structure of the fracture plane may be observed. Smectic layer 

surfaces are generally smooth but have occasional layer steps that are distinct and can be 

identified unambiguously.  

        We have also extended the FFTEM method to investigate some liquid crystal phase under 

electric field. In this case, the samples are sandwich between ITO glasses of 2 mm by 3 mm, 

connected by fine hair-like wires, as shown in Figure 4.6.1b. Electric field can be applied 

through the wires to the ITO electrodes and the samples can be quenched under electric field. 

After quenching, the electric field is turned off and the wires are removed, then the following 

procedure is the same as conventional FFTEM.  

        To the conventional FFTEM method, there are also some variations. Free surface 

transmission electron microscopy (FSTEM) is the method we have developed to investigate the 

self-assembly of liquid crystal phases at the air/liquid crystal interface. For this method, all 
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samples are prepared on clean glass substrates, as shown in Figure 4.6.1c. Due to the dewetting 

of liquid crystal materials from the glass surface, the samples will usually form a small dome on 

top of the substrate. At the same time, the samples are much thicker than those sandwiched 

between two glasses, and thus the polarity associated with the glass substrate has little effect on 

the structure at the free surface. However, the boundary conditions imposed by the air/liquid 

crystal interface play an important role in the self-assembly at the surface. All samples are cooled 

from the isotropic to the desired phase, with the phase being confirmed by optical microscope, 

and are rapidly quenched by immersion in liquid propane. Then the samples are coated with 2 

nm of platinum deposited at 45° and with 25 nm of carbon deposited at 90° at room temperature. 

In conventional FFTEM, after quenching, the samples are fractured and coated at -140°C to 

avoid any recrystallization. However, in order to visualize the free surface, we need to coat the 

samples at room temperature to get rid of the ice crystals which usually condense on the surfaces 

of cold samples when transferring them to the fracturing and coating machine. We have 

confirmed that no recrystallization happens during the short time that the samples are warmed to 

room temperature for coating. After dissolving the liquid crystal, the Pt-C replicas are placed in 

the TEM, where the topography of the liquid crystal surface may be observed. TEM images are 

interpreted with the understanding that regions of the surface facing the platinum shadowing 

beam appear dark, while those facing away are bright. 

        Freeze cutting transmission electron microscopy (FCTEM) is another variation on the 

conventional FFTEM. For FFTEM, the fracturing process is uncontrollable and usually the cells 

are fractured along one of the glass substrates. Freeze cutting transmission electron microscopy 

provides a controllable investigation of any plane below the free surface, by cutting a 

hemispherical-shaped sample drop with a sharp knife. For this method, sufficient samples are 
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placed on a copper holder where they form a hemispherical drop on top of the holder, as shown 

in 2.6.1d. After quenching the sample, the sample holder is placed in the fracture machine, where 

there is a sharp knife to cut the hemispherical sample to a desired depth. The following 

procedure is then the same as conventional FFTEM.  

 

 

Figure 2.6.1: Sample preparations for FFTEM and its variations. (a) Samples are sandwiched 
between glass planchettes of 2 mm by 3 mm for FFTEM. (b) Samples are sandwiched between 
glass planchettes with electrodes when investigating the microstructure of the liquid crystal 
phases under electric field. (c) Samples placed on the glass planchette for free surface 
transmission electron microscopy and no fracturing is needed to image the free surface 
topography of the liquid crystal phase. Due to the dewetting of liquid crystal materials from the 
glass surface, the samples will usually form a small dome on top of the substrate. (d) Samples are 
place on a copper holder and form hemispherical drop on the sample holder for freeze cutting 
transmission electron microscopy. 
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2.7  Nuclear magnetic resonance (NMR) 

        NMR spectroscopy is one of the principal techniques used to obtain physical, chemical, 

electronic and structural information about molecules due to the chemical shift, the Zeeman 

effect and so on, on the resonant frequencies of the nuclei present in the sample. It is a powerful 

technique that can provide detailed information on the topology, dynamics and three-dimensional 

structure of molecules in solution and the solid state. Those information obtained from NMR 

sometimes is critical to understand the liquid crystal phases, for example, the NMR study of the 

B4 phase of the symmetrical molecule P-9-OPIMB, which reveals double peaks of the C=O 

group indicating the conformational chirality of the molecules in the B4 phase [9]. 
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Chapter 3 

B4 Phase: Novel Self-Assembly of Helical Nanofilaments 

 

3.1  Introduction 

        Chirality has been one of the most attractive themes in chemistry since Pasteur’s famous 

experiment showing the handedness of tartaric acid [1]. Understanding how chirality arises is 

important from the perspective of science as well as technology. In biology, for example, 

several models have been proposed to address the fundamental question of how 

enantiomerically pure solutions or crystals might have emerged from a presumably racemic 

prebiotic world [2, 3, 4].  

        While quite common in crystals, spontaneous chirality was only recently reported in 

fluids of achiral molecules, with macroscopic chiral conglomerate domains observed in 

stacked fluid layers of banana-shaped, achiral liquid crystal molecules. Indeed, mesogens 

with bent cores and one or two flexible tails exhibit a wide variety of novel structural 

phenomena involving the interplay of chiral, polar, and liquid crystalline order [ 5 , 6 ], 

including the first manifestation of ferroelectricity in a smectic phase of achiral molecules [7]. 

The strong local preference for layering, coupled with the bent shape of the molecules, leads 

to two spontaneous, symmetry-breaking instabilities: polar molecular orientational ordering 

and molecular tilt [8]. These instabilities combine to drive the formation of chiral layered 

phases such as the B2 and B7 [9, 10]. 
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        It has been shown recently that in both the dark conglomerate and B4 phases of banana-

shaped molecules there is a preference for the smectic layers to have saddle-splay curvature 

[11, 12]. This tendency is attributed to the orthogonal tilt directions of the two molecular 

half-arms, which causes dilation in one half-layer and compression in the other. This 

produces a frustrated state that can be relieved by saddle-splay curvature, a response that 

accommodates both the chirality and the layering. While the dark conglomerate phase is 

composed of disordered focal conic domains, the B4 phase forms helical nanofilaments. Even 

though NOBOW is an achiral molecule, in a mechanism common to many bent-core phases, 

spontaneous symmetry breaking results in the B4 phase being chiral. However, the B4 is 

unique so far in being the only bent-core phase with a macroscopically chiral structure, the 

twisted filament. The hierarchical self-assembly of the nanofilament phase is shown in Figure 

3.1.1. The macroscopic chirality of the dark conglomerate phase is maintained by the local 

chiral organization of the molecules and the long-range continuity of the smectic layers. 

However, the establishment of macroscopic chirality in the B4 phase, which is composed of 

distinct left- or right-handed helical filaments, has remained a mystery. 
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Figure 3.1.1: Hierarchical self-assembly of the nanofilament phase. (a) The hierarchical self-
assembly of the nanofilament phase starts with bent-core mesogenic molecules, which form 
well-defined smectic layers with in-plane hexatic order, macroscopic polarization, and tilt of 
the molecular planes, making them chiral. (b) In this geometry, the half-molecular tilt 
directions on either side of the layer mid-plane are nearly orthogonal. The projections onto 
the layer mid-plane of the lattices formed by the core arms (yellow and violet) do not match, 
resulting in a local preference for saddle-splay layer curvature and driving the formation of 
twisted nanofilaments (c). 
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3.2  Chirality-preserving growth of helical filaments in the B4 phase of bent-core liquid 

crystals 

        The observation of unusually large chiral domains (of mm dimensions) in the 

depolarized transmission light microscopy (DTLM) in mixtures of the rod-shaped mesogen 

5CB or 8CB with NOBOW has led to their being intensively investigated [13, 14, 15]. 

Freeze-fracture transmission electron microscopy (FFTEM) images show individual twisted 

nanofilaments, allowing the direct measurement of the filament diameter and helix pitch, 

which we find to be independent of the 8CB concentration (Table 3.2.1). Precision x-ray 

diffraction measurements show that the smectic layer spacing in the B4 nanofilaments is also 

independent of the 8CB concentration [15]. In addition to reflections from the B4 filaments, 

the diffraction pattern shows at lower temperatures a separate Bragg peak from the 8CB 

smectic A layers, with a spacing d≈33 Å at temperature T≈33°C, also independent of the 8CB 

concentration. This suggests that NOBOW is insoluble in the 8CB, indicating an essentially 

complete phase separation of the two components once the B4 forms, with NOBOW forming 

nanofilaments and 8CB occupying the space between them. The chemical structure and the 

phase behavior of 8CB/NOBOW mixtures are shown in Figure 3.2.1. The linear reduction of 

the Iso–B4 transition temperature of NOBOW with increasing 8CB concentration 

corresponds to classical freezing point depression, where the latent heat obtained from fitting 

the slope of this phase boundary, ∆HIso-B4≈51 kJ/mol, matches the value ∆HIso-B4≈53 kJ/mol 

obtained from the extrapolation of the DSC data. The overall picture that emerges from these 

structural studies is of a strongly nano-segregated mixture of NOBOW filaments of diameter 

D≈36 nm, with 8CB in nano-sized pores whose average dimension decreases as the 8CB 
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concentration is reduced. At smaller 8CB concentrations, the confinement of the 8CB smectic 

in the random environment of NOBOW filaments leads to a broadening of the thermal 

anomalies associated with its Iso-N and N-SmA phase transitions [15] similar to what is 

observed in 5CB [16], indicating that 8CB is interacting with the filament surfaces and that 

orientational or layer ordering of the 8CB is limited to smaller and smaller volumes. In this 

case, the 8CB/NOBOW system can be well understood in terms of “nano-phase separation”, 

with the 8CB filling the volume between dilute, random networks of NOBOW B4 helical 

filaments. In the scenario of nano-phase segregation, the phase diagram of the NOBOW/8CB 

mixtures is generalized in Figure 3.2.2. 

        The mixtures also provide a good platform for investigating the development of chirality 

in the B4 phase, as in neat NOBOW the B4 phase grows in from the B2 and it is difficult to 

distinguish the nucleation events. In the mixtures, the B4 phase appears directly from the 

isotropic, forming large chiral domains in which we can directly observe the growth of the 

phase. In addition, because of the dilution with 8CB, each chiral domain comprises a network 

of individual B4 filaments where we can visualize how new helical nanofilaments branch off 

from existing ones. More importantly, phase segregation combined with spontaneous 

nanoscale self-assembly of the B4 helical nanofilaments offers the possibility for a wide 

variety of novel materials. Understanding the nucleation and growth behavior of the B4 

helical nanofilament in the blends will help in their application such as nano-heterogeneous 

media.  
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Figure 3.2.1: Phase diagram of the binary system derived from differential scanning 
calorimetry (DSC) and DTLM observations. The phase sequences of the pure materials on 
cooling are for NOBOW: Iso(175ºC)B2(147ºC)B3(143ºC)B4 and for 8CB: 
Iso(40ºC)N(33ºC)SmA. Mixtures of NOBOW with 8CB form a single, homogeneous phase 
only in the high temperature, isotropic range. At lower temperatures, the NOBOW B4 phase-
separates into a network of helical nanofilaments, leaving the 8CB to fill the interstitial 
spaces (NOBOW phases shown in black, 8CB phases in red). As the concentration of 8CB is 
increased, the NOBOW B2 and B3 phases disappear and the transition to the B4 phase is 
depressed, decreasing approximately linearly with 8CB concentration. The linear reduction of 
the NOBOW Iso-B4 transition corresponds to conventional freezing point depression. The 
DSC peak around 83°C observed in the mixtures (open purple triangles) arises from local 
pre-transitional orientational ordering of 8CB around the surface of NOBOW B4 helical 
nanofilaments, which will be discussed in detail in Section 3.3 of this chapter.  
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Table 3.2.1: Helical B4 filament characteristics in 8CB/NOBOW mixtures. The helix pitch p 
and filament width w were measured as a function of composition from freeze-fracture 
transmission electron microscopy images as indicated in Figure 3.2.5a. The uncertainties 
correspond to the standard deviation obtained from five measurements of each mixture. The 
helix structure shows little dependence on the 8CB concentration. 

 

 
Figure 3.2.2: Simplified phase diagram of binary mixtures of NOBOW and 8CB. Mixtures of 
NOBOW with 8CB form a single, homogeneous phase only in the high temperature, isotropic 
range, while at lower temperatures the NOBOW B4 phase totally phase-separates from 8CB. 
When the 8CB concentration is low, the 8CB is nano-confined in the random network formed 
by NOBOW B4 helical nanofilaments, while at higher 8CB concentration there are also 
domains of bulk 8CB. For nanoconfined 8CB, as 8CB is microscopically, homogeneously 
mixed with the NOBOW B4 nanofilaments and this 8CB has lost its bulk features [15, 16], 
we show it as a single phase on the diagram (“nanoconfined 8CB/NOBOW B4”). The 
eutectic point e is very close to the pure 8CB Iso–N transition in the NOBOW/8CB mixtures, 
as shown in the inset.  
 

8CB Concentration      0%     30%      50%     75%     95% 

Helix Pitch p (nm) 217+6 221+4 218+6 217+3 216+6 

Filament Width w (nm) 37+2 37+3 37+2 36+3 38+8 
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        The chirality of the mixtures was investigated by combining depolarized transmission 

light microscopy (DTLM), which reveals the macroscopic texture and optical activity, with 

freeze-fracture transmission electron microscopy (FFTEM), which shows the chirality of 

individual nanofilaments. For DTLM, 4 µm thick cells with rubbed polyimide alignment 

layers were filled with isotropic LC through capillary force. In pure NOBOW samples, the 

B4 phase comes in below the B2, and shows a uniform bluish color under crossed polarizers, 

with the texture resolved into left- and right-handed chiral domains when the polarizers are 

decrossed [12]. In mixtures with more than c=25% 8CB, measured in wt%, the B4 phase 

appears directly from the isotropic melt, at temperatures far above the clearing point of 8CB. 

When the B4 phase first appears, large homochiral domains of many millimeter across with 

random handedness grow out from distinct nuclei until they fill the available volume in the 

cell. For an 8CB/NOBOW mixture with c=50%, conventional optical activity is observed in 

the B4 phase. The sample is dark when viewed between crossed polarizers, because of its low 

birefringence, while uncrossing the polarizers by 5° reveals that each nucleation domain has a 

random but well defined handedness which is maintained as it grows. Eventually the cell is 

filled with distinct left- and right-handed chiral domains, distinguished by their opposite 

optical activity (Figures 3.2.3a and b). When the illumination is very strong, we can see using 

crossed polarizers that each region with uniform chirality comprises a single domain with a 

pattern of birefringence corresponding to a local optic axis pointing radially outward from the 

nucleation center (Figure 3.2.3c). This birefringence reflects anisotropy in the B4 filament 

organization as the phase grows out from the nucleation site. At high concentrations of 

NOBOW (for example, 1-c=50%), the B4 phase grows in as domains with smooth circular 
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boundaries, which eventually become parabolic when different domains meet. As the 

NOBOW concentration is decreased, the B4 phase growth morphology changes from circular 

to fractal domains. In mixtures with a low concentrations of NOBOW (for example, 1-

c=11%), a fantastic dendritic texture is observed when the B4 phase nucleates and grows 

within the isotropic 8CB medium (Figure 3.2.3d), with the chirality of the phase revealed by 

its optical activity (Figures 3.2.3e and f). When the sample is subsequently cooled so the 8CB 

goes from isotropic to nematic, the 8CB in the vicinity of the NOBOW dendrites becomes 

aligned by the B4 filaments (Figure 3.2.3g), while further from the NOBOW domains the 

8CB is planar-aligned by the glass surface. A sufficiently strong applied electric field causes 

the 8CB component to orient along the field direction, while the NOBOW shows no response 

(Figure 3.2.3h, bottom left). Figure 3.2.3i shows the optical texture, when 8CB changes from 

nematic to smectic. The layer normal tends to be parallel to the rubbing direction and yet is 

affected by the B4 helical nanofilaments presented. These optical observations all confirm 

that the chiral NOBOW domains grow from distinct nucleation sites and that the chirality is 

maintained as the domains grow. 
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Figure 3.2.3: Depolarized transmission light microscopy (DTLM) images of 8CB/NOBOW 
mixtures in 4 µm thick planar-aligned cells. (a)-(c) show a c=50% 8CB/NOBOW mixture at 
45°C, where the 8CB is isotropic and the NOBOW is in the B4 phase: (a), (b) Left- and right-
handed chiral domains can be observed when the polarizers are decrossed. The sample is dark 
between crossed polarizer and analyzer, with negligible birefringence under regular 
illumination. (c) With much stronger illumination, we see that each chiral region comprises a 
single domain with radial local optic axis orientation. (d)-(i) show a c=89% 8CB/NOBOW 
mixture at different temperatures: (d) Dendritic domains of the B4 phase can be distinguished 
from the interspersed isotropic 8CB medium (T=45°C), due to an index mismatch at their 
interface. (e), (f) The dendritic domains are chiral, as evidenced by the opposite optical 
activity revealed with decrossed polarizers. (g) When 8CB transitions from isotropic to 
nematic (T=37°C), the 8CB is locally aligned by the NOBOW B4 dendrites, with the 
alignment extending about 2 µm from the B4 boundaries, giving them a thin magenta outline. 
The details of this alignment are still under investigation. Far from the NOBOW dendrites, 
8CB is planar-aligned by the glass surface. (h) In an applied electric field of 10 V/µm (lower 
left half of the image), the 8CB aligns with the field, giving homeotropic orientation and 
optical extinction, while the dendritic B4 regions do not respond. (i) When 8CB changes from 
nematic to smectic, the layer normal tends to be parallel to the rubbing direction and yet is 
affected by the B4 helical nanofilaments presented. The scale bar is 100 µm in all images, 
and the double-headed arrow indicates the planar alignment direction. The contrast in (a), (b), 
(d), (e) and (f) was enhanced using Adobe Photoshop. 
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        In the absence of preferred nucleation sites, B4 domains are expected to nucleate 

homogeneously. If we assume that each domain starts as a spherical cluster of radius r which 

liberates a latent heat -Gv (energy/volume) during formation, but which must pay the cost γ 

(energy/area) of creating the surface interfacing with the surrounding isotropic material, then 

the change in free energy in forming such a cluster is W=-4/3πr3Gv+4πr2γ. These bulk and 

interfacial energies are sketched in Figure 3.2.4a, where we see that below a critical radius 

rc=2γ/Gv it costs free energy to add molecules to the B4 cluster (green curve in Figure 3.2.4a). 

We expect the surface tension γ at the interface to depend on such properties of the B4 

filaments as the smectic layer spacing d, the filament width w, and the helix pitch p. The 

smectic layer spacing in the B4 filaments is independent of the 8CB concentration [15], and 

the helix pitch and width, shown in Table 3.2.1, are also invariant. It therefore seems 

reasonable to assume that γ stays the same through the whole concentration range. However, 

the magnitude of the normalized latent heat of the I–B4 transition which is essentially 

equivalent to Gv, shown in Figure 3.2.4b, decreases significantly as the NOBOW 

concentration goes down. This implies that the critical radius for nucleation of the B4 phase 

increases as the NOBOW is progressively diluted. Since the Iso-B4 phase transition is above 

100°C in the mixtures, NOBOW molecules undergo rapid diffusion in the isotropic phase and 

are able to reach the site of nucleation quickly enough to promote growth. In this scenario, 

the nucleation rate is limited by the average number of critical clusters, while the critical 

radius rc is enhanced in the mixtures and only very few nuclei can reach the critical radius rc, 

aided for example by thermal fluctuations or super cooling. Another factor which may also 

contribute to the formation of large chiral domains in the mixtures is that the increased 
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coexistence range of the Iso and B4 phases in the mixtures leads to a reduction in the 

effective cooling rate. In practice, it is much easier to get large homochiral domains in the 

mixtures than in pure NOBOW. An example of domain nucleation and growth is shown for a 

c=50% 8CB/NOBOW mixture in Figures 3.2.4c-e.  

 

 

 
Figure 3.2.4: Energetics and real-time observation of chiral domain nucleation and growth of 
NOBOW B4 phase in 8CB/NOBOW mixtures. (a) The competition between the energy 
gained by creating a new volume of B4 (-4/3πr3Gv, red curve) and the cost of surface tension 
(4πr2γ, blue curve) results in a finite energy barrier to homogeneous nucleation (green curve) 
and a critical radius rc. For heterogeneous nucleation, for example in the case of chiral doping, 
the critical radius rc is the same as for homogeneous nucleation, but the energy barrier of 
domains with the same chirality as the dopant is reduced (magenta curve). (b) The normalized 
latent heat of the NOBOW Iso-B4 phase transition decreases as the concentration of 
NOBOW is reduced. (c), (d) and (e) DTLM images showing the nucleation and growth of B4 
domains in a c=50% 8CB/NOBOW mixture in a 4 µm cell at 128°C at one second intervals. 
The scale bar is 100 µm in all images, and the growth velocity is around 0.1 µm/ms. The 
contrast has been enhanced using Adobe Photoshop. 
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        The degeneracy of left- and right-handed chiral domains of a liquid crystal phase can be 

lifted in a variety of ways [8, 17, 18, 19, 20, 21, 22]. For example, an imbalance of chirality 

can be produced by an external chiral stimulus, such as weak chiral doping giving strong 

“sergeants-and-soldiers” enantio-selection of B4 chirality [8, 17], chiral surface treatments 

with polyimide layers possessing chiral side chains [18], growth from a twisted nematic [19] 

or chiral B2 phase [20], illumination with circularly polarized light [21], or using a nonchiral 

polymer network template to achieve a macroscopically chiral structure [22]. These effects 

can be understood in the general context of heterogeneous nucleation theory. For example, in 

the case of chiral doping, the critical radius for nucleation remains unchanged while the 

energy barrier that must be overcome for heterogeneous nucleation of domains of the same 

chirality as the dopant is greatly reduced, facilitating nucleation (magenta curve, Figure 

3.2.4a). 

        Freeze-fracture transmission electron microscopy (FFTEM), which enables visualization 

of structure on nanometer length scales, reveals many details of the local layer organization in 

the B4 phase. Our observations of 8CB/NOBOW mixtures confirm that the B4 phase is made 

of individual helical filaments [12], and show unambiguously that these occur with both left- 

and right-handed twist, illustrated in Figures 3.2.5a and c. We propose that the handedness of 

the B4 helices determines the global chirality of the macroscopic, homochiral domains 

observed in DTLM such as those shown in Figure 3.2.3, with homochiral filaments 

organizing collectively into locally ordered arrays of coherent twist, extending over visible 

length scales to form macroscopic chiral domains. In many hundreds of B4 FFTEM images 

of a variety of samples, a consistent feature of the B4 filaments is that they are of the same 
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handedness over large areas. No mixing of left- and right-handed helical filaments has ever 

been observed, even in images covering many square microns. This is consistent with the 

optical observation that the B4 domains are large, homochiral, and have distinct boundaries, 

as seen in Figure 3.2.3. The twist sense of the helical filaments depends on the layer chirality 

of the tilted, polar bent-core molecules, sketched in Figures 3.2.5b and d. Because of the in-

plane hexagonal ordering of the molecules [12], the molecular arms dilate along the tilt 

direction, with the top and bottom arms (modeled as elastic slabs in Figures 3.2.5b and d, top 

right) tilting in orthogonal directions. In order to relieve the stress induced by the mismatch 

of the top and bottom core arms of the banana molecules, saddle-splay curvature of the layers 

is adopted. When coupled with the polarization of the phase (the saddle-splay curvature itself 

is achiral), the structure is chiral and favors one sign of helical twist of the nanofilament, 

either left-handed (Figure 3.2.5b) or right-handed (Figure 3.2.5d). In other words, twist of the 

filaments (structural chirality) is a consequence of the local layer chirality resulting from the 

interplay of molecular polarization and tilt.  
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Figure 3.2.5 Left- and right-handed B4 filaments and their corresponding molecular 
organization. FFTEM images of a c=75% 8CB/NOBOW mixture quenched at 37°C reveal 
large homochiral regions with either (a) left- or (c) right-handed helices. Such images suggest 
that the macroscopic chiral domains of the B4 phase seen in the optical microscope comprise 
exclusively left- or right-handed helical filaments. The inset in (a) shows the convention for 
molecular director n and molecular bow direction b of bent-core molecules, with the 
polarization P along b. The handedness of the helices is determined by the corresponding 
layer chirality, as shown in (b) and (d). Each molecular arm can be viewed as being an 
elastically isotropic slab, which dilates along the molecular tilt direction and compresses 
perpendicular to the molecular tilt direction due to the hexagonal in-plane ordering [11, 12]. 
Because the tilt directions of the top and bottom molecular arms are orthogonal, the two 
elastic slabs adopt saddle-splay curvature to relieve the intra-layer mismatch. The local layer 
chirality, determined by the polarization and molecular tilt, results in distinct regions with 
orthogonal saddle-splay and opposite signs of filament twist. The filament width w and pitch 
p measured in different mixtures are shown in Table 3.2.1.  
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        The unusual size of the homochiral domains, and our ability to make direct observations 

of domain growth in the mixtures, prompt us to speculate a mechanism of filament growth in 

which their handedness is preserved. If each filament nucleated and grew individually from 

the isotropic, random mixtures of left- and right-handed filaments would be expected. Since 

the filaments are all left- or right-handed over large areas, the nucleation and growth process 

is chirality-preserving, with the chirality of new filaments determined by filaments already 

present. We propose that the helicity in each domain is preserved through a growth process 

starting from a single nucleus, rather than forming each filament individually with a random 

handedness. In general, an isotropic NOBOW molecule can either attach to the ends of an 

existing B4 filament to make it longer, or attach to the side of the filament to make it wider, 

or form a new layer on the filament surface. However, x-ray reflections from the B4 smectic 

layers show diffuse peaks, indicating layer correlations over distances of only 40 nm, 

implying that the nanofilament thickness is limited to about eight smectic layers. Although 

the layers show only short-range order, they are robust, giving several harmonics in the x-ray 

reflection pattern [12]. Thus we first focus on growth that makes the filaments wider, arguing 

that the final filament width is determined by the elastic energy of the layers. 

        As we have mentioned previously, saddle-splay curvature is adopted in order to relieve 

the stress induced by the mismatch of the top and bottom core arms of the banana molecules 

[11, 12], which leads to a preferred value of saddle-splay curvature. For the NOBOW B4 

helical nanofilament, when modeled as a collection of twisted, isotropic, elastic slabs 

(Figures 3.2.5b and d), the elastic energy density of a filament is given, to quadratic order of 

the principal curvatures σ´ and σ´´, by fE ൌ K/2ሺσ´ ൅ σ´´ሻଶ െ Kഥሺσ´σ´´ሻ ൅ Gሺσ´´ െ σ´ሻ, where 
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K and Kഥ are the Frank elastic constants for mean and Gaussian curvature respectively, and G 

drives curvature in response to the frustrated internal in-plane layer strain β [12]. In the model 

proposed by Matsumoto et al. [23], the nth twisting layer surface of a helical B4 nanofilament 

is given by xsinሺqzሻ േ ycosሺqzሻ ൌ nd, where d is the layer spacing and p=2π/q the helix 

pitch. The േ sign gives left- or right-handed twist respectively. For a left-handed twisting 

central layer, the coordinates of any point on the layer are given by 

rԦ ൌ ሺscosሺqzሻ, െssinሺqzሻ, zሻ , where s is the displacement from the helix axis, shown in 

Figure 3.2.6a. Following Kamien’s procedure for determining the curvature [ 24 ], the 

principal curvatures as a function of s are σ=σ´=-σ´´=q/(1+q2s2), where p=2π/q is the helix 

pitch and s is the displacement from the helix axis. For a minimal surface such as the B4 

helical filament, the elastic energy cost is given by fE
୫ ൌ Kഥሺσ െ σ୭ሻଶ, where σ୭ ൌ 1/R୮ ൌ

G/Kഥ gives the preferred curvature [12]. However, in a thermotropic smectic, where the layers 

are constrained to have constant spacing, the preferred saddle-splay arrangement cannot be 

maintained over long distances. Therefore as previously calculated, the principal curvature σ 

of the central layer of the filament varies as a function of s, as σ=q/(1+q2s2), where p=2π/q is 

the helix pitch and s is the displacement from the helix axis. Figure 3.2.6b shows how the 

curvature decreases towards the outside of a helical filament with preferred curvature σ=σo at 

s=0. As the sample is cooled into the B4 range, the ribbon can lower its free energy by 

gaining Gibbs energy Gv, releasing latent heat. The energy density gained during growth 

obtained by considering the cost of elastic energy and the gain of Gibbs energy, can be 

expressed as f ൌ fE
୫ െ G୴, so that the energy gained per unit length of a filament central layer 

of width w and thickness d becomes 
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where the principal curvature as a function of s is σ=q/(1+q2s2) and the integration element 

can be expressed as dA ൌ ඥ1 ൅ sଶqଶdsdz. Here, we have neglected the surface tension term 

( ן rଶ ) as it is small compared to the bulk terms ( ן rଷ ) in the growth process. This 

normalized linear energy density is plotted as a function of scaled filament pitch and width in 

Figure 3.2.6c. Analytical minimization using Mathematica yields wmax/Rpº1.4 and p/Rpº5.6 

when G୴R୮
ଶ /Kഥ ൌ 0.1. For p=217 nm, a typical helix pitch observed in the FFTEM images, we 

predict a preferred maximum filament width wmax=54 nm, which is similar to what is 

observed experimentally (confirming that G୴R୮
ଶ /Kഥ ൌ 0.1  is a good estimate of the 

dimensionless constant, which will be used again in the energy density argument below). In 

our model, the high elastic energy cost makes the growth of filaments beyond wmax 

unfavorable. We propose that for this reason, filaments eventually split, lowering the overall 

elastic energy while continuing to gain Gibbs energy as more material is added to the 

filaments. Examples of such filament bifurcation are shown in the FFTEM images of Figures 

3.2.6d and e, with a cross-section of the bifurcating filament sketched in Figure 3.2.6f. The 

layer chirality is preserved as the filament grows wider. When the filament branches into two 

filaments, the two new filaments twist in phase with each other. Further examples of 



40 
 

branching are shown in Figures 3.2.6g and h, while Figure 3.2.6i depicts an array of 

collectively organized filaments in this filament growth scenario.   

 

 
Figure 3.2.6: Chirality-preserving growth of helical B4 filaments. (a) Cross section (pink 
plane) of a helical filament, showing the filament width along x, thickness along y, and length 
along z. The molecules are tilted, with the polarization oriented along z, the helix axis. d is 
the smectic layer spacing. (b) Normalized principal curvature of the central layer of the 
filament (shaded blue in (a)) as a function of normalized distances from the helix axis 
assuming the preferred curvature σ=σo at s=0. Away from the helix axis, the layers deviate 
from the ideal shape, at the cost of higher elastic energy. (c) Normalized energy gained per 
unit length of filament central layer as a function of scaled width and pitch given by Eq. 3.2.1. 

Minimization of the energy assuming G୴R୮
ଶ /Kഥ ൌ 0.1 gives a filament thickness wmax/Rpº1.43 
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and pitch p/Rpº5.57. Above the critical filament width wmax in this model, the reduction of 
the Gibbs energy achieved by growing wider can not compensate for the associated increase 
in the elastic energy. (d) FFTEM image showing chirality-preserving dendritic growth of 
helical filaments. New filaments branch from the center of an existing one to form a pair of 
filaments with the same twist. The region in the white box is enlarged in (e) to show helix 
branching more clearly. (f) Cross-sections of the helical filament near the branching area as 
marked in (e). Since the molecular organization is preserved during widening, both the 
chirality and the twist of the branched filaments are the same as the original one, and 
neighboring helices are naturally phase coherent. (g) FFTEM image of a c=75% 
8CB/NOBOW mixture, showing the remanents of neighboring filaments above, most of 
which have been removed by fracture (magnified in the inset). (h) FFTEM image of pure 
NOBOW showing filament branching. The inset shows the layer edges and surfaces in a 
branching region. (i) Model of a bundle of homochiral, phase-coherent, helical B4 
nanofilaments. 

 

        The preceding analysis is based on minimizing the total free energy per unit length of 

the central layer of the filament, which yields a finite filament width w. We now extend these 

arguments by considering the kinetics of filament growth, showing that local variations in the 

elastic energy determine the growth velocity profile of the filament tip and lead to 

spontaneous bifurcation. As discussed above, the energy density gained during filament 

growth is given by 
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where the principal curvature as a function of s is σ=q/(1+q2s2) and the preferred curvature 

can be expressed as σ୭ ൌ 1/RP ൌ G/Kഥ. Figure 3.2.7a shows the normalized energy density 

as a function of normalized distance from the helix axis for three different helix pitches and 

the corresponding preferred, final filament radii, assuming G୴R୮
ଶ /Kഥ ൌ 0.1. In all cases, f<0 

for small s/Rp, favoring growth when the filaments are thin, and f>0 for large s/Rp, where the 
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elastic energy cost is larger than the Gibbs energy gained, and the growth terminates, which 

gives the final radius of the filament. The final filament radius (r1, r2, r3) increases with q, 

indicating that the filaments twisted more tightly can gain more free energy by increasing 

their width. Since the growth velocity normal to the Iso/B4 interface, vn(s), is linearly 

proportional to the energy density gained (the energetic driving force) and is thus a function 

of the radial displacement s: vn=0 when f>0 and when f<0, the velocity profile is of the form  

              v୬ሺs/R୮ሻ ן |fE
୫ െ G୴| ൌ 0.1 െ ൬ ୯/஢౥

ଵାሺ୯/஢౥ሻమሺୱ/R౦ሻమ െ 1൰
ଶ
 µm/ms.           (Eq. 3.2.3)              

We have chosen the constant of proportionality (not shown) to be 1 µm/ms to match typical 

experimental velocities, which are around 0.1 µm/ms. Figure 3.2.7b shows the velocity 

profiles for q=σo and q=1.2σo. In order to illustrate how the velocity field leads to bifurcation 

of the filament tip, we have computed the advance of the tip in time using 

z(t+∆t)=(vn/cosθ)*∆t+z(t), where θ is the inclination of the filament tip (Figure 3.2.7c), 

starting from a plane front. When q=σo, the steady state tip is parabolic in shape and the tip 

has a constant growth velocity vn(s/Rp=0) (magenta curves in Figure 3.2.7c). When q>σo, the 

growth velocity along z at the two sides (“shoulders”) of the filament vs is much larger than 

that at the filament center line vc (see Figures 3.2.7b and c), and the two sides of the filament 

grow much faster than the center, eventually causing the tip to bifurcate (blue curves in 

Figure 3.2.7c). This result is consistent with experimental observations that the tip front is 

parabolic and the filaments always bifurcate symmetrically about the center. In this scenario, 

heterogeneous nucleation and directional growth of helical filaments at the edge of a cell 

(Figure 3.2.7d), giving macroscopically aligned helical nanofilaments, is one of the easiest 

way of obtaining aligned helical nanofilaments. 
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Figure 3.2.7: Kinetic analysis of filament tip growth. (a) Normalized energy density gained 
during growth as a function of normalized distance from the helical axis for different q, 
shown in the plot. When the helical twist pitch (p=2π/q) is large, growth occurs fastest along 
the helix axis (s=0). Below a critical twist pitch p=2π/q<2π/σo, however, more energy is 
released per volume by growth of the off-axis “shoulders” of the filament tips and these 
regions therefore grow faster. The corresponding final filament radii r are indicated at left. (b) 
Velocity profile vn as a function of normalized distance from the helix axis for q=σo and 
q=1.2σo. (c) Analytic simulation of filament tip growth, starting from a planar growth front, 
first using the velocity profile assuming q=σo (magenta curves), and then the profile for 
q=1.2σo (blue curves), which leads to tip bifurcation. (d) Heterogeneous nucleation and 
directional growth of helical filaments at the edge of a cell (bottom of image), giving 
macroscopically aligned helical nanofilaments. The scale bar is 50 µm. 
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        From the above discussion, we know that NOBOW B4 helical nanofilaments in the 

mixtures are quite robust, expelling 8CB and forming nanofilaments identical to those seen in 

pure NOBOW, which means that in the NOBOW/8CB system, the NOBOW B4 phase is 

totally phase-separated from the 8CB on the molecular scale. On the other hand, through the 

bifurcation of growing filaments, the B4 phase forms a random network of homochiral 

filaments. At low concentration of 8CB (below c=50%), 8CB is microscopically (tens of nm 

in scale), homogeneously mixed with this random network [15] and no bulk 8CB is observed 

in this regime. Such phase segregation on the molecular scale combined with mixing on the 

microscopic scale makes the system ideal for a wide variety of novel materials. For example, 

the chiral boundary condition presented by the B4 helical nanofilaments enables nematic 5CB 

(achiral rod-like molecule) to fill space with a chiral director field, which strongly enhances 

the non-linear optical rotation [14]. 

        The B4 phase is one of the most complex hierarchical self-assemblies known in soft 

materials. We have directly observed and characterized chirality-preserving growth of the B4 

helical nanofilaments in NOBOW/8CB mixtures. The alignment of bent-core liquid crystal 

phases in general has been a challenging and interesting topic, and understanding the 

nucleation and growth behavior of the helical nanofilaments in the B4 phase suggests novel 

ways of achieving macroscopic alignment of those nanofilaments. As shown in Figures 3.2.8a 

and b, the B4 phase shows a strong birefringence under DTLM when the sample is sheared in 

the B2 phase [ 25 ]. FFTEM images (Figures 3.2.8c and d) show unambiguously the 

macroscopically aligned nanofilaments, which accounts for the anisotropic optical index 

observed under DTLM. The helical nanofilaments can also be aligned effectively over large 
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areas along one global direction by heterogeneous nucleation, for example using directional 

growth at the edge of a cell, as shown in Figure 3.2.7d.  

 

 

 
Figure 3.2.8: DTLM and FFTEM images showing macroscopically aligned B4 helical 
filaments of pure NOBOW sheared in the B2 phase at T=165°C before cooling to the B4 
phase. (a) The sheared B4 phase shows a strong birefringence when the shearing direction is 
at 45° to the polarizer, and extinguish (b) when the shearing direction is along the analyzer. 
(c), (d) FFTEM images showing the macroscopic alignment of helical nanofilaments along 
the shearing direction at low and high magnification respectively.  
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       In a summary, freeze-fracture transmission electron microscope images confirm that the 

B4 helical filaments of NOBOW observed in mixtures with 8CB, a calamitic mesogen which 

is not soluble in the B4 phase, are structurally identical to those seen in pure NOBOW. 

Adding 8CB results in the formation of large homochiral domains, allowing the nucleation 

and growth of individual B4 chiral domains to be characterized. The constraint of constant 

smectic layer spacing in the B4 banana phase prevents the establishment of globally uniform 

saddle-splay curvature in the twisted filaments, with the local curvature of the smectic layers 

deviating from the preferred value as you move away from the helix axis. In order to lower 

the Gibbs free energy by continued growth without accumulating excess elastic energy, 

filaments that reach a certain width exhibit spontaneous branching. As each filament has 

specific layer chirality, an existing filament and all of its branches are naturally homochiral 

with the layers of adjacent filaments twisting in phase. This kind of spontaneous nanoscale 

self-assembly of the B4 helical nanofilaments offers the possibility for a wide variety of 

novel materials. 
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3.3  Pre-transitional orientational ordering of a calamitic liquid crystal by helical 

nanofilaments of a bent-core mesogen: Surface interaction and large surface effect. 

        Mixtures of liquid crystals (LCs) sometimes yield new phases and may show phase 

sequences not present in any of the individual components [26]. In many cases, desirable 

liquid crystalline properties and phases with broad temperature ranges can be obtained more 

easily by mixing compounds of different shapes and properties than by performing systematic 

variations in the synthesis of pure compounds.   

        Mixtures of bent-core and calamitic (rod-shaped) mesogens are particularly interesting 

systems for exploring the role of molecular shape in determining liquid crystal ordering. 

Transitions between the B2 banana phase and mesophases more typically found in calamitic 

compounds, e.g. the phase sequence SmA-SmC-B2, have been reported in pure bent-core 

mesogens [27]. The experiments indicate that an essential condition for such phase sequences 

is a change of the molecular conformation as a function of temperature. Studies of the binary 

mixtures of bent-core and calamitic mesogens have led to the observation of the phase 

sequences SmA-B2, SmC-B2, and N-SmA-SmC-B2 [28]. The calamitic/bent-core binary 

system reported by Pratibha et al. [29, 30] shows an orientational transition of bent-core 

molecules, which, at low concentration (3 to 4 mol%), order within the smectic layers of the 

rod-like molecules with the director orthogonal to the layer normal and display a biaxial 

smectic A2 (SmA2b) phase. Rod-like chiral dopants have also been used to control the 

proportion of left- and right-handed chiral domains in thin cells of achiral bent-core 

compounds [31].   
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        In the 3.2 section of this chapter, we have characterized the chirality preserving-growth 

of the helical nanofilaments in the 8CB/NOBOW mixtures. In this section, we will probe in 

detail the interaction of the helical nanofilaments of the NOBOW B4 phase with 8CB 

molecules. We find that there is substantial pre-alignment of the 8CB by the B4 helical 

nanofilaments far above the 8CB bulk isotropic-nematic transition temperature, which we 

believe must be due to a thin film of 8CB adsorbed to the nanofilament surface. DSC and 

NMR experiments provide clear evidence for the existence of an adsorbed 8CB film on the 

nanofilament surfaces above the 8CB Iso-N transition, as we shall discuss below.  

        8CB/NOBOW mixtures of concentration c, where c is the wt% of 8CB in the mixture, 

were prepared in the range 0% < c < 100%. The differential scanning calorimetry (DSC) data 

shows an additional peak at T≈83°C (Figure 3.3.1a), more than 40°C above the clearing point 

of pure 8CB, which appears neither in pure NOBOW nor in pure 8CB. At the same time, the 

normalized latent heat of the bulk 8CB Iso-N transition at T≈40°C in the mixtures (black 

triangles in Figure 3.3.1b) is substantially reduced compared with that of pure 8CB. This 

strongly indicates that some fraction of 8CB is pre-aligned by the NOBOW B4 helical 

nanofilaments, inducing orientational ordering of 8CB at elevated temperature. Indeed, in 

mixtures which are almost 8CB, with few B4 nanofilaments available to pre-align the 8CB, 

the normalized latent heat of the bulk 8CB Iso-N transition approaches the bulk value, while 

the contribution from pre-aligned 8CB becomes very small (Figure 3.3.1b). The pre-

alignment transition of the 8CB is not noticeable in the depolarized transmitted light 

microscope, presumably because any additional birefringence from pre-transitional 

orientational ordering of the 8CB is averaged out by the global orientational disorder of the 
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B4 nanofilaments. However, nuclear magnetic resonance (NMR) provides a sensitive 

alternative probe of the local orientational ordering of the 8CB molecules. 

 

 

Figure 3.3.1: DSC scans and pre-alignment of 8CB indicated by the DSC scans. (a) DSC 
scans of 8CB/NOBOW mixtures (c=10%, 30%, 50%, 70% and 89%), pure 8CB, and pure 
NOBOW obtained on cooling [15]. Dashed lines 1, 2, and 3 mark the pure 8CB N-SmA 
transition, the pure 8CB Iso-N transition, and the pure NOBOW B4 glass transition, 
respectively. Dashed line 4 marks the pre-alignment of 8CB by NOBOW B4 helical 
nanofilament in the mixture. As the 8CB concentration increases, the transition temperature 
of NOBOW Iso-B2 transition and Iso-B4 transition decreases due to freezing point 
depression. The 8CB nematic range is observed to broaden slightly as the NOBOW 

concentration increases. (c) Normalized latent heat of the 8CB bulk Iso-N transition (T≈40°C, 
black triangles) and that of 8CB pre-aligning around the B4 filament surfaces (T≈83°C, blue 
squares) in a series of 8CB/NOBOW mixtures. The latent heat of the surface-pre-aligned 
8CB increases as the concentration of B4 filaments increases, with a corresponding decline 
for that of the bulk 8CB Iso-N transition. The red stars show the sum of the 8CB bulk Iso-N 
transition and pre-aligned latent heats in the mixtures.  
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        Solid-state NMR spectra were acquired using a Varian Inova 400 spectrometer equipped 

with an extended variable-temperature 4 mm cross-polarization, magic-angle-spinning 

(CPMAS) probe, operating at 100.63 MHz for 13C observation. CPMAS spectra were 

acquired using a 90º pulse of 3.4 µs, a typical MAS spinning frequency of 11 kHz, with a 

Hartmann-Hahn spin locking field of 71.5 kHz for both 1H and 13C. Typical cross-

polarization contact times were 4.0 ms, and TPPD 1H decoupling was applied during 

acquisition. Single-pulse 13C MAS NMR was done using a 3.5 µs 90º excitation pulse. The 

relaxation delay was 3.0 s for all experiments. Actual sample temperatures were calibrated 

using the 207Pb chemical shift of lead nitrate, as described in [32]. Using careful matching of 

air-flows and spinning-speeds with the calibration standard, we were able to achieve 

reproducible sample temperatures of ±2ºC. 

        In CPMAS NMR, the observed 13C NMR signal arises via the heteronuclear, first-order 

dipole-dipole coupling between the 1H nuclei and the 13C nuclei. In a rapidly-tumbling, 

isotropic environment, this interaction is zero, and the cross-polarization (CP) mechanism 

vanishes. Therefore, the observation of a 13C NMR signal via CP indicates that the molecule 

is either tumbling slowly on the NMR/dipolar-coupling timescale (~10–100 kHz), or that the 

molecular motion is anisotropic in nature. In addition, in CPMAS experiments, only the 

proton nuclei need to relax between transient acquisition, and in condensed phases, 1H spin-

lattice relaxation time-constants (T1) are generally significantly smaller than 13C, often by one 

or more orders of magnitude. In a single-pulse, magic-angle-spinning (MAS) spectrum, all of 

the net 13C magnetization present in the sample is excited by the pulse; however, in rigid 

solids, the T1 relaxation time is so long that no signal is observed under signal averaging 
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unless very long relaxation delay times are used. In this work, when performing single-pulse 

MAS NMR, only highly mobile molecules having solution-like T1 relaxation behavior are 

observed with significant intensity.  

        To illustrate this, in the c=75% 8CB/NOBOW mixture observed with the sample at 

T≈80°C, above the Iso-N transition temperature of pure 8CB but still well below the clearing 

point of NOBOW, the single pulse spectrum (Figure 3.3.2a) is predominantly from 8CB, both 

bulk and pre-aligned, except at small chemical shift where there is some signal from the 

NOBOW tails, which are more mobile than the cores. Using this isotropic liquid-phase 13C 

data, it is possible to assign nearly all of the resonances of the 8CB molecule, assisted by the 

predicted 13C NMR shifts using the ACD/Labs NMR software (version 12.0). Fortuitously, in 

the NMR spectrum, the two strongest 8CB peaks (around 29 and 126 ppm, marked by red 

stars in Figure 3.3.2) do not significantly overlap with the NOBOW spectrum, and can easily 

be distinguished in the CPMAS NMR spectrum in Figure 3.3.2b. When subtracting an 

appropriately scaled single pulse NMR signal (Figure 3.3.2a) from the CPMAS NMR signal 

(Figure 3.3.2b), we obtain the CPMAS NMR spectrum of pure NOBOW (Figure 3.3.2c), 

which is consistent with that reported in [32]. 

        We recorded a series of CPMAS NMR spectra while cooling the c=30% 8CB/NOBOW 

mixture, shown in Figure 3.3.3. As expected, at high temperature all of the 8CB is isotropic 

and the spectrum is purely from the NOBOW B4 phase (Figure 3.3.3a). At slightly lower 

temperature, the two strongest 8CB peaks appear (Figure 3.3.3b, marked by red stars), 

indicating that there is anisotropic 8CB which is orientationally ordered far above the Iso–N 



52 
 

transition of bulk 8CB. On further cooling, the 8CB peaks persist all the way down to room 

temperature (Figures 3.3.3c-f). To analyze the 8CB peak intensity quantitatively as a function 

of temperature, we first normalize each scan by setting the integrated intensity of the two 

peaks around 68 ppm to a value of 100, for they are due only to NOBOW and are 

independent of 8CB below the NOBOW clearing point. As shown in Figures 3.3.3g and h, 

8CB signals appear at T≈93°C, a temperature that is slightly higher than that obtained by 

DSC, indicating the onset of orientational ordering of 8CB around the nanofilament surfaces. 

On further cooling, the 8CB signal strength increases steadily, indicating that the orientational 

ordering of 8CB is progressively enhanced. When the sample is cooled through the bulk 8CB 

Iso–N transition (blue dashed line in Figures 3.3.3g and h), there is a large increase of the 

8CB signal as the remaining 8CB becomes nematic. 

 

 

Figure 3.3.2: Single pulse and CPMAS NMR spectra of a c=30% 8CB/NOBOW mixture. (a) 
The single pulse NMR spectrum taken at T≈80°C is dominated by the 8CB signal. At low 
chemical shift there is some signal from the tails of NOBOW, which are more mobile than 
their cores. (b) The CPMAS NMR spectrum at T≈25°C shows both NOBOW and 8CB peaks. 
Fortuitously, the two strongest peaks from 8CB do not overlap significantly with the 
NOBOW spectrum (marked with red stars). (c) The NOBOW spectrum obtained by 
subtracting the scaled single pulse signal (a) from the CPMAS signal (b) agrees well with the 
spectrum of pure NOBOW reported previously [32]. 
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Figure 3.3.3: CPMAS NMR spectra of a c=30% 8CB/NOBOW mixture at different 
temperatures. (a) At high temperature, there is no contribution from 8CB and the spectrum is 
the same as that of pure NOBOW [32]. (b) 8CB peaks (indicated by red stars) appear on 
cooling, indicating the presence of anisotropic 8CB far above the bulk 8CB Iso–N transition. 
(c)-(f) show the 8CB signal persisting all the way down to room temperature. (g), (h) Relative 
intensities of 8CB peaks around 126 ppm and 29 ppm respectively, obtained by setting the 
integrated intensity of the NOBOW peaks near 68 ppm to a value of 100 in each scan and 
then subtracting the high temperature isotropic background. On cooling, the anisotropic 8CB 
signal first appears at about T≈93°C (red line) as a first order transition, which is slightly 
higher than the temperature predicted by DSC (around T≈83°C). This may be due to the 
different environment of the NMR sample holder. The 8CB peak intensities increase slightly 
on further cooling, with a strong enhancement of the NMR signal below the 8CB bulk Iso-N 
transition temperature (T≈39°C, blue line). 
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        The CPMAS NMR spectra of the c=70% 8CB/NOBOW mixture are qualitatively 

different from those of the c=30% 8CB/NOBOW mixture. At high temperature (Figure 

3.3.4a), well below the NOBOW Iso-B4 transition, there is no signal either from NOBOW or 

8CB, even though the NOBOW is in the B4 phase. This is because there are fewer B4 

filaments than in the c=30% 8CB/NOBOW mixture and those that are present are mobile, 

floating around in the 8CB medium, with no orientational order. As the sample is cooled and 

the B4 filaments become more rigid, the NOBOW signal begins to appear, together with 8CB 

peaks (Figures 3.3.4b-f). As before, we observe 8CB peaks in the CPMAS NMR spectra at 

temperatures far above the bulk 8CB Iso-N transition temperature, confirming the pre-

transitional orientational ordering of 8CB by the B4 filaments. The simultaneous appearance 

of the 8CB and NOBOW signals on cooling indicates a strong dependence of 8CB pre-

alignment on the presence of the B4 filaments. 
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Figure 3.3.4: CPMAS NMR spectra of a c=70% 8CB/NOBOW mixture at different 
temperatures. (a) At high temperature but well below the NOBOW Iso-B4 transition, the B4 
nanofilaments are mobile and float around in the isotropic 8CB solution, resulting in no NMR 
signal either from 8CB or from NOBOW. (b) At slightly lower temperature, the B4 filaments 
become more rigid and both B4 and 8CB peaks (the latter marked with red stars) appear. (c)-
(f) On further cooling, both the B4 and 8CB signals become more intense. 

 

        In contrast to pure NOBOW, where smectic layer edges are seen in FFTEM images of 

the helical nanofilaments (right inset, Figure 3.3.5a), no layer edges are visible in the 

mixtures with 8CB (Figure 3.3.5a, magnified in the left inset), consistent with the idea that 

each B4 filament in the mixture is coated by an aligned layer of 8CB (Figure 3.3.5b), with the 

8CB molecules adhering to the filament at some fixed orientation relative to the local 

NOBOW smectic layering. We can use the latent heat data to obtain a quantitative estimate of 

the thickness of the ordered 8CB coating. We approximate the helical B4 filaments as 

cylinders and assume that only 8CB in a thin layer around each filament is pre-aligned 
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(Figure 3.3.5b). We expect that a substantial fraction of the 8CB can be pre-aligned because 

the surface area to volume ratio of the B4 filaments is large (º108 m-1). Assuming that the 

latent heat release per 8CB molecule is the same for molecules orientationally ordering at the 

nanofilament surface or becoming nematic in the bulk liquid crystal, the ratio of ∆Hpre-align, 

the latent heat release at the pre-alignment transition, to ∆HI-N, that of the bulk 8CB Iso-N 

phase transition, as a function of 8CB concentration c, depends only on the relative volumes 

of the surface (red region) and bulk (blue region) 8CB:  

௥௔௧௜௢ܪ∆          ൌ  ∆ு೛ೝ೐షೌ೗೔೒೙

∆ு಺షಿ
ൌ  ୟሺଵିୡሻ

ୡିୟሺଵିୡሻ
   where       ܽ ൌ  ఘఴ಴ಳ

ఘಿೀಳೀೈ
 ൬௥೟೚೟ೌ೗ష 

మ ௥ಿ ೀಳೀೈ 
మ

௥ಿ ೀಳೀೈ 
మ ൰. 

The best fit to the ratios obtained by DSC at different 8CB concentrations is aº0.29, shown 

in Figure 3.3.5c. Assuming similar liquid crystal densities (rNOBOWºr8CBº1 g/cm3) and taking 

a typical bare filament radius measured from FFTEM images (rNOBOWº18 nm), we obtain 

rtotalº20.4 nm, implying that 8CB is pre-aligned in a sheath about 2.4 nm thick around the 

nanofilaments. Several factors may cause this simple model to underestimate the thickness of 

the pre-aligned 8CB sheath. First, the aggregation of filaments, as seen in Figure 3.3.5a, 

reduces the overall exposed filament surface area and thus reduces the measured ∆Hpre-align. 

Second, the orientational ordering of the 8CB may well occur inhomogeneously on the 

nanofilaments, given that the chemical potential of the smoothly helixing smectic ribbon 

surfaces are different from that of the exposed layer edges. Finally, we see from Figure 3.3.1b 

that the latent heat sum ∆Hpre-align+∆HI-N in the mixtures (red stars in Figure 3.3.1b) is 

noticeably smaller than ∆HI-N of pure 8CB Iso-N transition, implying that the pre-alignment 

latent heat release per molecule is in fact smaller than that of the bulk Iso-N transition.    
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Figure 3.3.5: Structural model for the pre-alignment of 8CB by NOBOW B4 helical 
nanofilaments. (a) FFTEM image of c=75% 8CB/NOBOW mixture quenched at T≈37°C and 
then fractured at T≈-140°C. The image shows helical filaments of the NOBOW B4 phase 
near the glass surface (magnified in the left inset). No layer edges are visible, suggesting that 
the filaments are smoothly coated with 8CB, in contrast with pure NOBOW (right inset), 
where layer edges are easily identified. (b) In our model, the filaments are approximated as 
cylinders (grey region), with pre-aligned 8CB forming a thin sheet around each cylinder (red 
region) and the rest of the 8CB being isotropic (blue region). (c) Analysis of the latent heat 
ratios of pre-aligned to bulk 8CB Iso-N transition, ∆Hratio=∆Hpre-align/∆HI-N, as a function of 
8CB concentration implies that a 2.4 nm thick layer of 8CB is pre-aligned around each 
filament. 

 

        The elevated temperature of the pre-alignment indicates that the 8CB/NOBOW surface 

interaction is strong, and its appearance as a transition over a rather narrow temperature range 

indicates that some kind of well defined interfacial complex is being formed. Although 

roughly the pre-alignment can be viewed as a coating of a cylindrical filament by a uniform 

layer of 8CB, in actuality the filaments present two quite distinct surfaces to the 8CB, the 

layer surfaces S, and the layer edges E in Figure 3.3.5b. Since the S and E surfaces most 

likely have very different adsorption characteristics for 8CB, it is likely that only one surface 
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subset, the S or the E, is involved in the pre-alignment. A requirement for the pre-alignment 

appearing as a well-defined transition is a well-defined and repeatable nanostructure of the 

adsorption surface. Figure 3.3.5a shows that the filaments grow in a very regular way, 

suggesting that they provide an appropriate transition substrate. As noted above, the fact that 

the layer edges of filaments of pure NOBOW are visible in the FFTEM image but not in 

those of filaments of a NOBOW/8CB mixture (inset, Figure 3.3.5a), may indicate that the 

pre-alignment is occurring on the layer edges, a mode that would be consistent with the 

strong adsorption of 8CB on aromatic graphite [33] and polyimide [34] surface. On the other 

hand, it is well known that smectic layers at interfaces are molecularly smooth and exhibit a 

wide variety of surface induced phase transitions, including the formation of smectic layers at 

the isotropic-air and isotropic-solid interfaces. At this point, however, the precise molecular 

adsorption mechanism in the pre-aligned layer is not known. The pre-aligned 8CB sheath 

might resemble liquid crystal films at the air/water interface [35, 36, 37, 38] or pre-wetting 

films of 8CB on silicon substrates [39, 40], where a smectic-like trilayer organization, 

comprising a tilted, polar monolayer of 8CB with a thickness of 8 Å, covered by a 32 Å 

bilayer, is energetically favored, even in the isotropic phase. Alternatively, the nanofilament 

layer edges, clearly visible in the FFTEM images of pure NOBOW, should present a highly 

anisotropic organic surface to the surrounding 8CB molecules, similar to that found on 

rubbed polymer surfaces commonly used to align liquid crystals. Such surfaces impose planar 

alignment of the liquid crystals and induce nm thick aligned surface layers in the isotropic 

phase [41, 42]. 

        In a summary, on cooling the isotropic mixture, the NOBOW component phase 
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separates, forming a dilute, random network of helical nanofilaments in the B4 phase with 

isotropic 8CB material filling the interstitial volume. At lower temperature, but still far above 

the bulk isotropic–nematic transition of pure 8CB, a significant fraction of the 8CB becomes 

pre-aligned on the filament surfaces, due to the relatively large surface area of the NOBOW 

filaments. The pre-transitional orientational ordering of 8CB far above its bulk Iso-N 

transition has been unambiguously verified by NMR spectroscopy. We propose that this pre-

transitional ordering is induced by short-range interactions of the polar 8CB molecules with 

the NOBOW filaments, leading to the formation of an adsorbed film of orientationally frozen 

8CB around each filament. 
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3.4  Structure of the B4 liquid crystal phase near a glass surface: Suppression of the 

structural chirality 

        The formation of chiral smectic phases has been a key feature of achiral, banana-shaped 

molecules, with spontaneous symmetry breaking originally described in the B2 phase of P-9-

OPIMB, also known as NOBOW. The first observation of macroscopic chiral domains was 

also in the B4 phase of P-9-OPIMB homologs [43], where large left- and right-handed chiral 

domains can be distinguished under decrossed polarizers. These domains immediately 

suggested some kind of helical structure [44] and it has since been confirmed that left- and 

right-handed helical nanofilaments are the structural basis of the B4 phase [12]. The bent-

core molecules form well-defined smectic layers with in-plane hexatic order, the coupling of 

macroscopic polarization and tilt of the molecular planes making the layers chiral. In this 

geometry, the half-molecular tilt directions above and below the layer mid-plane are nearly 

orthogonal, so that the projections onto the layer mid-plane of the lattices formed by the core 

arms do not match and there is a local preference for saddle-splay layer curvature that drives 

the formation of twisted nanofilaments. These nanofilaments are internally crystalline but 

their mesoscopic organization is liquid crystalline. The existence of helical nanofilaments in 

the B4 phase has been verified unambiguously by freeze-fracture transmission electron 

microscopy (FFTEM) images, such as those in Figures 3.4.1a and b. In section 3.2 of this 

chapter, we have proposed that the formation of macroscopic chiral domains of the B4 phase 

proceeds through the nucleation and chirality-preserving growth of individual helical 

nanofilaments, with single filaments bifurcating when they exceed a critical width.  

        Although macroscopic chiral domains have also been observed in the dark conglomerate, 
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a fluid phase of disordered focal conics [11], the B4 is unique in being the only bent-core 

phase with a macroscopically chiral structure, the twisted filaments. While the dark 

conglomerate usually appears on cooling directly from the isotropic and changes to crystal at 

lower temperature [45, 46, 47, 48], the B4 filaments are quite stable and robust, with the 

properties of the phase preserved even on cooling to room temperature and in mixtures with 

calamitic LCs (Figure 3.4.1b), making B4 materials of potential use for chiral-optic materials. 

        Because of their twisted conformation, helical filaments cannot completely fill space 

near the interface with a flat substrate or make full contact with such a surface. This implies 

that the structure of the B4 phase must be modified at a liquid crystal/glass interface. In this 

section, FFTEM is used to reveal the surface structure of the B4 phase of bent-core materials 

in the P-n-OPIMB homologous series, as shown in Figure 3.4.1c, and to explore the 3D 

arrangement of the smectic layers near a liquid crystal/glass interface. Our experiments reveal 

a rich diversity of surface structures that will help us better understand the complex nature of 

the B4 bent-core liquid crystal phase. 
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Figure 3.4.1: Self-assembly of B4 helical nanofilaments and chemical structures and phase 
sequences of P-n-OPIMB liquid crystals. (a) Helical nanofilaments of the B4 phase of P-8-
OPIMB quenched at room temperature observed by FFTEM. The angle between the helix 
axis z and the helix groove direction is about 37º. (b) Helical nanofilaments of the B4 phase 
of P-9-OPIMB observed by FFTEM in a c=75% 8CB/P-9-OPIMB mixture quenched at 37°C. 
(c) Chemical structures and phase sequences on cooling of the P-n-OPIMB materials 
investigated.   

 

        An FFTEM image of P-8-OPIMB fractured near one of the glass planchettes (Figure 

3.4.2a) reveals the topography of the B4 phase at different heights above the glass substrate. 

The upper right part of Figure 3.4.2a shows the typical bulk texture of densely packed B4 

helical filaments, growing on top of layer undulation stripes, the B4 surface structure seen in 

the rest of the image. Unlike the layer undulations observed in the B7 phase, which are a 

direct consequence of layer thickness variations associated with polarization modulation [10], 

or the periodically flattened semi-cylinders observed in thin smectic films frustrated between 

two interfaces imposing antagonistic anchoring [ 49 ], Figure 3.4.2a shows different 

topography at different distances from the glass substrate. When the fracture plane is close to 

the glass (at lower right) we see alternating curved and flat regions, while further away from 
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the glass (at lower left), the surface topography appears as undulations with a periodicity of 

around 100 nm. The surface structure manifested near the liquid crystal/glass interface can be 

modeled as a 1D parabolic focal conic (PFC) array of smectic layers. PFCs are a variant of 

conventional focal conics (if the two foci of an ellipse are infinitely far from each other, the 

shape of the ellipse near one of the foci approaches a parabola). PFC domains have been 

observed in many other systems, for example, in dilated smectic A cells [ 50 ] and in 

cholesteric liquid crystal cells with an electric field applied along the twist axis [51]. A 1D 

PFC array can be constructed from a set of parabolas with their foci along the liquid 

crystal/glass interface (Figure 3.4.2b). The focus is colinear with the line defect (the structure 

is translationally invariant along this line) at the interface, which in most cases minimizes the 

elastic free energy of the system [49]. Due to the fluidity of the B4 phase at high temperature, 

the line defects can locally anneal into ordered, one-dimensional arrays at the liquid 

crystal/glass interface. Near the glass (the lower right part of Figure 3.4.2a), the equidistant 

parabolas are separate and the layers are alternately curved (within the parabolas) and flat 

(outside the parabolas) as sketched in Figure 3.4.2c. Further from the glass (the lower left part 

of Figure 3.4.2a), the adjacent parabolas overlap and periodic undulations of the layers are 

observed, with the layers curving around the line defects within the envelope of each 

parabola as indicated in Figure 3.4.2b. By measuring the widths of two undulating regions at 

different heights, we can compute the form of the parabola. Since the height difference 

between the regions with 50 nm and 68 nm wide curved layers shown in Figure 3.4.2a is 

approximately 10 nm (calculated from the width of the shadowed step between the two 

regions), the parabola is described by u–1/(4a)=av2
 with a≈0.019 nm–1. 
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Figure 3.4.2: Parabolic focal conic surface structure of the B4 phase of P-8-OPIMB near the 
liquid crystal/glass interface quenched at room temperature. (a) FFTEM image showing the 
topography of the B4 phase fractured at different heights above the liquid crystal/glass 
interface. The lower half shows the parabolic focal conic array near the glass, with the lower 
right closer to the interface and the lower left further away. The region marked at upper left 
shows a PFC array oriented almost orthogonal to that in the lower half. The rest of the upper 
half shows the typical self-assembly of helical filaments of the B4 phase in the bulk. (b) and 
(c) Model of the surface topography of the PFC array fractured at different heights h. The 
curves are parabolas with their foci at the glass substrate. The smectic layers curve around the 
focus within each parabola and become flat outside, giving alternating curved and flat regions. 
With each additional layer, the curved regions become wider until the parabolas overlap and 
the layers show homogeneous, periodic undulations.  

 

        Because the glass is essentially untreated, the surface anchoring is very weak, with no 

clear preference for either homeotropic or planar anchoring of the director. The crucial 

element inducing the B4 surface structure is thought to be the flat geometry of the substrate, 

which suppresses the formation of helical nanofilaments at the glass. However, we believe 

that the in-plane molecular ordering of the PFC array is the same as that in the bulk 

nanofilaments, for above a certain distance from the glass substrate, helical nanofilaments do 

appear, growing continuously on top of the undulating layers. The elastic energy density of 
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the PFC is given, to quadratic order of the two principal curvatures σ´ and σ´´ of the layers, 

by fE ൌ K/2ሺσ´ ൅ σ´´ሻଶ െ Kഥሺσ´σ´´ሻ ൅ Gሺσ´´ െ σ´ሻ, where K and Kഥ are respectively the Frank 

elastic constants for mean and Gaussian curvature, and G drives curvature in response to the 

frustrated internal in-plane layer strain β [12]. The minimum of the elastic energy density, 

shown in Figure 3.4.3, is obtained when σᇱ ൌ െσᇱᇱ ൌ G/Kഥ (the minimal surface), leading to 

the adoption of saddle-splay curvature. As the distance from the glass increases, the confining 

influence of the glass surface on the layers becomes weaker, and the undulating structure of 

the surface layers eventually transitions to the characteristic bulk helical nanofilament 

structure, seen in Figure 3.4.2a. The PFC surface structure is estimated to penetrate no more 

than 100 nm into the bulk.  

 

 
Figure 3.4.3: Elastic energy density fE ൌ K/2ሺσ´ ൅ σ´´ሻଶ െ Kഥሺσ´σ´´ሻ ൅ Gሺσ´´ െ σ´ሻ  of the 
smectic layers as a function of σ´ and σ´´ with K=2, Kഥ=1 and G=1. The energy is minimized 
when σᇱ ൌ െσᇱᇱ ൌ G/Kഥ (minimal surface). For K=2, Kഥ=1 and G=1, the minimum is obtained 
when σ´=–σ´´=1. The elastic energy cost intrinsically drives the layers to adopt the saddle-
splay curvature in the B4 phase. 
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        The surface undulations in any given FFTEM images are typically not uniformly aligned 

along one direction but adopt two degenerate orientations at right angles, as can be seen in 

Figures 3.4.2a and 3.4.4a. This appears to be due to the independent formation of new PFC 

arrays, which nucleate heterogeneously and grow perpendicular to the edges of existing 

arrays as shown in the inset of Figure 3.4.4a. We have also observed bamboo-like surface 

structures growing from the boundaries of PFC arrays (shown in Figure 3.4.4a) or nucleating 

independently (shown in Figures 3.4.4b and 3.4.5). We propose that this structural variant is 

made of layers nested in toric focal conic (TFC) domains, with the axial defect line lying at 

the liquid crystal/glass interface and the circular defect line normal to the glass (see the inset 

of Figure 3.4.4b). A characteristic feature of the bamboo-like structure is that the radial 

growth is self-limiting, ceasing when the layers extend far away from the axial defect line, as 

seen in Figure 3.4.4b. Similar elastic energy arguments to those limiting the height of the 

PFC arrays can be applied here. As a smectic layer grows away from the axial defect line, it 

becomes flatter. Since the layers intrinsically prefer to be curved, this costs more and more 

elastic energy and eventually the growth terminates. The disordered, fractal-like arrangement 

of the bamboo-like structure (compared with the ordered PFC arrays) may be a manifestation 

of quenched disorder, which would occur if they formed at lower temperature and were 

unable to anneal into ordered arrays. Disordered surface structures with worm-like textures, 

shown in Figures 3.4.6a and b, have also been observed near the glass substrate. 
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Figure 3.4.4: Nucleation and growth of the toric focal conic structure near the liquid 
crystal/glass interface in the B4 phase of P-7-OPIMB quenched at room temperature and 
observed by FFTEM. (a) Coexistence of parabolic focal conic arrays essentially orthogonal to 
each other is commonly observed (the smooth regions on either side of the PFC arrays are 
bare glass). This is a result of the nucleation and growth of new PFC arrays at the edges of 
existing ones (magnified in the inset). (b) Toric focal conics in the B4 phase. This bamboo-
like structure, which is also visible along the right boundary of the PFC arrays in (a), is made 
of toric focal conics with their axial defect lines lying along the glass. A model of the layers is 
shown in the upper inset, with the straight line and the circle representing the line defects. As 
the layers further from the surface grow, they become flatter (magnified in the lower inset). 
The reduced curvature raises the elastic energy and inhibits the structure from growing further.  
 

 
Figure 3.4.5: Nucleation and growth of the bamboo-like surface structure of P-7-OPIMB in 
the B4 phase near the liquid crystal/glass interface quenched at room temperature. 
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Figure 3.4.6: FFTEM images of P-16-OPIMB quenched at 160°C in the B4 phase. (a) and (b) 
show a disordered, worm-like surface structure. The thin surface layer seen here and in 
Figure 3.4.8 may be another (as yet unidentified) kind of B4 surface structure. The small “pits” 
in the images are artifacts due to ice crystals which condensed on the liquid crystal surface 
after fracturing. 

 

        The topology in both the B4 and dark conglomerate phases of bent-core liquid crystals is 

driven by the tendency for the layers to adopt saddle-splay curvature, which leads to the 

formation of minimal surface that can be realized in the form of helicoid and catenoid. 

Though the catenoid (Figure 3.4.7a) and helicoid (Figure 3.4.7b) are adjoint 

structures/topologies, with the same local mean and Gaussian curvatures at equivalent points 

on the saddle-splay surfaces, the reason why the bulk B4 phase prefers the shape of helicoids, 

forming helical nanofilaments with structural chirality [12], while the shape of catenoids 

dominates in the dark conglomerate phase, with the layers forming disordered focal conics in 

the bulk [11] or quasi-ordered toric focal conics at the free surface (Chapter 4), is still a 

mystery. The observation of toric focal conics at B4 surfaces suggests (Figures 3.4.4, 3.4.5 

and 3.4.6) that focal conics may be thermodynamically close to helical nanofilaments in the 

B4 phase and might be observed under the right conditions in bulk B4.  
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Figure 3.4.7: Model of catenoid (a) and helicoid (b), both of which are minimal surfaces. The 
catenoid and helicoid are adjoint, sharing the same local mean and Gaussian curvatures at 
equivalent points on the saddle-splay surfaces. The catenoid is, however, macroscopically 
achiral while the helicoid is macroscopically chiral. 
 
 
 

 
Figure 3.4.8: FFTEM images of P-16-OPIMB quenched at 160°C in the B4 phase. (a) and (b) 
show toric focal conic structures (enclosed by blue circles), each with the axial defect line 
perpendicular to the substrate and the circular defect line lying on the glass surface.    
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        The transition from the B4 surface structure to bulk helical nanofilaments is illustrated 

in Figure 3.4.9a. The filaments appear to be smoothly connected to the underlying PFC arrays, 

and show characteristic flame-tip-like texture (Figures 3.4.9a and b). The filaments make an 

angle of about 38º with respect to the PFC stripe direction, essentially matching the angle 

between the helix axis and the helical groove (~37º, shown in Figure 3.4.1a). Careful 

examination of the filaments in Figure 3.4.9b reveals a broken symmetry: the filaments all 

have the same twist sense (i.e., they are homochiral) and rotate clockwise from the undulation 

stripes in this case. Although layer twist is suppressed at the glass surface, the smectic layers 

are nevertheless chiral (the molecules are polar and tilted, as indicated in Figure 3.4.9c) and 

we propose that this chirality is inherited by the helical filaments growing above, leading 

them to be homochiral and uniformly oriented with respect to the undulation stripes. The 

projection of the periodicity of the PFC array along the helix axis z of the nanofilaments is 

about 106 nm (Figure 3.4.9b), which is approximately the half-pitch of a filament (p/2≈108 

nm). The B4 filaments growing on top of the undulating layers thus appear to align their 

grooves epitaxially along the curved surface layers, as sketched in Figure 3.4.9c. This 

alignment is also observed when nanofilaments grow on the bamboo-like surface structure, as 

shown in Figure 3.4.10.  
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Figure 3.4.9: Homochiral helical nanofilaments growing on top of parabolic focal conic 
surface arrays in the B4 phase of P-7-OPIMB quenched at room temperature. (a) FFTEM 
image showing PFC arrays near the glass and helical nanofilaments above them, as well as 
bamboo-like toric focal conics at the left boundary. (b) Details of the region indicated in (a). 
Smectic layers forming on top of the undulated surface layers twist into helical nanofilaments. 
The nanofilaments grow with an orientation of about 38º from the direction of the undulation 
stripes and have a characteristic flame-tip-like texture. The projection of the periodicity of the 
PFC array along the helix axis z of the nanofilament is about 106 nm, matching the half-pitch 
of the filament. (c) Cartoon of the transition from undulating surface layers to bulk helical 
filaments. The inset shows the molecular polarization and molecular tilt which give layer 
chirality shared in the untwisted surface layers and the twisted nanofilaments. 
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Figure 3.4.10: Homochiral helical nanofilaments (enclosed by white box) formed on top of 
the bamboo-like surface structure in the B4 phase of P-7-OPIMB. The sample is quenched at 
room temperature. 

 

        In a summary, freeze-fracture transmission electron microscopy images reveal the 

diverse topology of the B4 liquid crystal phase of mesogens in the P-n-OPIMB homologous 

series near the liquid crystal/glass interface. One-dimensional, periodic parabolic focal conic 

arrays are manifested as smectic layer undulations near the glass. Nucleation and growth of 

toric focal conic surface structures is also observed. Although the growth of twisted 

nanofilaments, the usual manifestation of structural chirality in the B4 phase, is suppressed 

near the surface, the smectic layers are intrinsically chiral. Further from the glass substrate, 

the layers evolve to the familiar twisted structure of the bulk, with homochiral helical 

nanofilaments nucleating smoothly on top of the underlying layers and growing epitaxially 
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with the helix groove aligned along the crests of the curved layers. This observation suggests 

that it may be possible to align B4 helical nanofilaments along one global direction using 

topographically patterned substrates. 
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3.5  Nanoconfined systems prepared by helical nanofilament network of bent-core liquid 

crystal 

        Porous materials are widely used in the chemical industry as catalysts and catalyst 

supports for chemical reactions, or as templates for materials fabrication [52, 53, 54, 55]. 

Nanoconfined systems prepared using these porous materials are also of rich fundamental 

scientific interest, with new physics often resulting from the finite-size effects, the varying 

dimensionality, and the surface forces [56]. Molecules confined within narrow pores, a few 

molecular diameters across, can exhibit a wide range of physical behavior, as a large fraction 

of the confined molecules will experience a reduction in the number of nearest-neighbor 

molecules. Conventional nanoporous materials have crystalline or regular pore structure (e.g. 

aluminosilicates, aluminophosphates) and amorphous pore structure (e.g. porous glasses, 

silica aerogel). Preparation of nanoconfined system in conventional nanoporous materials 

usually involves infiltrating the isotropic material by capillary force. However, even a small 

number of defects in the host material may interrupt the interconnected pore structure, 

making complete filling difficult. Collapse of the porous structure may also happen.  

        From the discussion of previous sections, we know that the B4 phase of bent-core 

molecules is a recently characterized helical nanofilaments phase [12]. Though, made of 

achiral bent-core molecule, the B4 phase forms distinct left- and right-handed chiral domain 

under depolarized transmission light microscopy and helical structure is proposed in the B4 

phase [44]. In the B4 phase, bent-core mesogenic molecules organize into layered smectic 

liquid crystal phases in which there is a strong inherent tendency for saddle splay deformation 

of the molecular layers due to intra-layer mismatch. Growth of the B4 phase is limited to left- 
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or right-handed helical nanofilaments, which accounts for the left- and right-handed chiral 

domains. On the other hand, due to the constraint of constant layer spacing and preferred 

layer curvature, helical nanofilaments of the B4 phase is limited to about eight smectic layers 

(40 nm) and only diffuse peaks are observed in the x-ray reflections from the smectic layers. 

Although the layers show only short-range order, they are robust, giving several harmonics in 

the x-ray reflection pattern.  

        In the study of mixtures of bent-core molecules and rod-like molecules [13], people get 

a better understanding of the B4 helical nanofilament phase. Those helical nanofilaments are 

quite robust, expelling 8CB in the NOBOW/8CB mixtures and forming nanofilaments 

identical to those seen in pure NOBOW, which means that in the NOBOW/8CB system, the 

NOBOW B4 phase is totally phase-separated from the 8CB on the molecular scale [15]. On 

the other hand, through the bifurcation of growing filaments, the B4 phase forms a random 

network of homochiral helical nanofilaments. At low concentration of 8CB (above c=50%, 

weight percent of NOBOW in the mixture), 8CB is microscopically (tens of nm in scale), 

homogeneously mixed with this random network and no bulk 8CB is observed in this regime. 

Such phase segregation on the molecular scale combined with mixing on the microscopic 

scale makes the helical nanofilaments network ideal for preparing nanoconfined systems. 

Rich property has emerge from the nanoconfined systems prepare by the helical 

nanofilaments network [16, 14], for example, the appearance of a liquid crystalline nematic-

isotropic critical point of 5CB in the mixture system of P-8-OPIMB/5CB.  

        In this section, we explore the feasibility of preparing nano-confined systems through 

the phase separation process by cooling down mixtures of NOBOW with other materials and 
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we will also characterize the 3D random network structure formed by the B4 helical 

nanofilaments. Mixtures of NOBOW with different materials, e. g. 8CB (rod-like molecule, 

forming SmA phase), JR6-65C (discotic molecule, forming hexagonal columnar phase) [57, 

58], M6R8 (rod-like monomer, forming SmA phase) in PM6R8 (rod-like polymer, forming 

bilayer SmC phase) [59, 60] and P3HT (polymer, forming crystal nano whisker) [61, 62], are 

investigated. In all these systems, the components mix completely in the isotropic range, but 

phase separate when cooled down.  

        The chemical structures and phase sequences of the materials investigated here are 

shown in Figure 3.5.1. All of the mixtures with NOBOW have similar phase behavior, where 

the NOBOW bent-core molecules undergo self-assembly of helical nanofilaments, as shown 

in Figure 3.5.2a. The phase diagram of the mixtures, based on x-ray diffraction (XRD) and 

depolarized transmission light microscopy (DTLM) observations, can be simplified and 

generalized as in Figure 3.5.2b. All the mixtures form a single, homogeneous phase in the 

high temperature, isotropic range. At large concentrations of NOBOW, upon cooling, the 

NOBOW B4 phase first appears, separating from the isotropic medium, to form a random 

network of the helical nanofilaments. Those helical nanofilaments are quite robust and are 

identical to those in pure NOBOW, as the peak position and FWHM of their x-ray diffraction 

in different mixtures are essentially invariant, as shown in Table 3.5.1, indicating no other 

molecule dissolves in the B4 helical nanofilaments. Subsequently, the investigated phase is 

nanoconfined in this network and undergoes the phase transition upon further cooling. As the 

concentration of NOBOW decreases, there may be coexistence of nanoconfined and bulk 

phase of the investigated material, due to the low concentration of helical nanofilaments or 
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the bulk phase of investigated material may appears first. The eutectic point e depends on the 

property of the investigated materials. Below, we will describe the behavior of those mixtures 

in detail.  

 

 

 

Figure 3.5.1: Chemical structures and phase sequences of the materials NOBOW, 8CB, JR6-
65C, P3HT, M6R8 and PM6R8. I, isotropic; Cr, Crystal; G, glass; Dh, hexagonal discotic; Dx, 
unidentified discotic.  
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Figure 3.5.2: Formation of nanoconfined system through the self-assembly of helical 
nanofilaments in the mixtures. (a) Self-assembly of helical nanofilaments. The bent-core 
molecules form well-defined smectic layers, while the coupling of macroscopic polarization 
and tilt of the molecular planes makes the layers chiral. Due to the in-plane hexatic order, 
each half-layer dilates along the tilt direction of their molecular arm while the tilt directions 
of molecular arms above and below the layer mid-plane are nearly orthogonal. This kind of 
intra-layer mismatch results in a local preference for saddle-splay layer curvature and driving 
the formation of twisted nanofilaments. (b) Simplified, generalized phase diagram of the 
mixture of NOBOW with other materials investigated here derived from x-ray diffraction 
(XRD) and DTLM observations.  
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Mixture of 
NOBOW with 
other materials 

c=50% 
with 
8CB 

c=41% 
with 

JR6-65C 

c=49% with 
90%M6R8 in 

PM6R8 

c=50% with  
77%M6R8 in 

PM6R8 

c=50% 
with 

P3HT 
Temperature (°C) 70 76 69 69 68 

Peak Position (A-1) 0.13100 0.13096 0.13139 0.13164 0.13102 
FWHM (A-1) 0.01159 0.01095 0.01021 0.01158 0.00707 

Table 3.5.1: Peak position and FWHM of B4 helical nanofilaments’ x-ray diffraction around 
70°C in different mixtures of NOBOW with other materials. Peak position and FWHM of 
NOBOW B4 phase were measured by fitting the XRD peak using Lorentz function. The peak 
position of NBOW B4 phase is essentially invariant in different mixtures and is the same as 
that in pure NOBOW, indicating no molecule mixes in the B4 helical nanofilament. FWHM 
is also identical in different mixtures. 

 

        Columnar phases comprising of supermolecular assemblies of disk-shaped molecules 

show the potential application as semiconductor, for electron can travel along the columnar 

axis. Recently, triphenylene based discotics have emerged as a new class of fast 

photoconductive materials, due to their photoconductivity and high charge carrier mobilities 

[63]. However, the columnar phase range of those materials is typically very narrow, due to 

the C3 symmetry of the molecules, which have a large chance of optimal packing leading to 

crystallization. JR6-65C is a discotic mesogen synthesized to broaden the phase range and 

increase the mobility of the electrons by limiting or biasing the molecular rotation within the 

columns, which leads to fewer degrees of rotational freedom within the column and results in 

higher overall order in the mesophase. They possess a single electron-withdrawing group 

(and consequently a large dipole moment) connected directly to the polyaromatic core. Figure 

3.5.3a shows the XRD scan of the hexagonal columnar phase (Dh phase) in pure JR6-65C. 

The peak from the hexagonal ordering is pretty much resolution-limited, indicating long-

range order in the bulk. However, in the mixture of c=60% NOBOW/JR6-65C (c is the 
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weight percent of NOBOW in the mixture), the peak from JR6-65C columnar phase can only 

be fitted by two Lorentz peaks (shown in Figure 3.5.3b), one resolution-limited and one 

diffuse, which indicates that some portion of the Dh phase is nanoconfined by the NOBOW 

nanofilament network. By integrating the areas of the two peaks, we can calculate the portion 

of the bulk (area~0.188) and nanoconfined phase (area~0.728), which means that 79.5% of 

the columnar phase is nanoconfined. Due to the confinement, the peak position in the mixture 

shift by (0.1 Å) relative to that in pure material, which is minor in affecting the property of 

the Dh phase. To see the phase behavior of the mixture more clearly, the periodicities of the 

NOBOW B4 phase and JR6-65C Dh phase as a function of temperature are shown in Figure 

3.5.3c. The two components mix well in the high temperature isotropic range. On cooling, 

NOBOW first phase separates, forming the helical nanofilament network. Afterwards, the 

isotropic discotic molecules of JR6-65C transition into the columnar phase, with some of 

them confined in the nanofilament network. In contrast to the binary system of NOBOW/8CB, 

where all 8CB is nanoconfined above c=50%, there is still bulk Dh phase (20.5%) in c=60% 

mixture, indicating that the hexagonal ordering is more resistant to the disturbance introduced 

by the nanofilament network than the smectic layering. In order to get a clearer picture of the 

nanoconfined system, Figure 3.5.3d shows the helical nanofilament network of the NOBOW 

B4 phase under crossed polarizers, while the JR6-65C is still isotropic. When further cooling 

down the mixture, the Dh phase of JR6-65C appears as tiny white spots when confined in the 

porous network (Figure 3.5.3e).    
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Figure 3.5.3: Binary mixture of NOBOW/JR6-65C. (a) XRD of pure JR6-65C showing the 
resolution-limited peak of the hexagonal columnar phase (Dh). (b) XRD scan of a c=60% 
NOBOW/JR6-65C mixture. The peak from the JR6-65C columnar phase is fitted by two 
Lorentz peaks, one resolution-limited (bulk component) and one diffuse (nanoconfined 
component). (c) Layer spacing of the NOBOW B4 phase and JR6-65C Dh phase in a c=60% 
NOBOW/JR6-65C mixture. They are essentially independent of temperature. On cooling, 
NOBOW B4 phase first forms the random helical nanofilament network from the isotropic. 
Afterwards, the discotic molecules of JR6-65C change to the columnar phase. (d) DTLM 
image of the NOBOW B4 phase in a c=80% NOBOW/JR6-65C mixture at T=100°C, where 
JR6-65C is isotropic. (e) DTLM image of a c=80% NOBOW/JR6-65C mixture at T=60°C, 
where the nanoconfined JR6-65C columnar phase contributes to the tiny white spots. 
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        PM6R8 is a peculiar polymeric mesogen, forming a bilayer antiferroelectric smectic C 

phase, though the molecule itself is achiral [59]. The molecular packing of this bilayer 

antiferroelectric smectic C phase has been clearly elucidated in mixtures of the monomer 

M6R8 in PM6R8, using freely suspended films [60]. Here ternary mixtures of NOBOW with 

M6R8 in PM6R8 are prepared. On one hand, we will further testify the stability of the 

formation of the NOBOW B4 helical nanofilaments in the present of the polymer. On the 

other hand, we will show how the pore size of the nanofilament network can be modified by 

introducing e.g. polymer, other than changing the NOBOW concentration. The bulk SmA 

peak of 90% M6R8 in PM6R8 is shown in Figure 3.5.4a, which is almost resolution-limited. 

In a ternary mixture of c=49% NOBOW/90% M6R8 in PM6R8, the NOBOW B4 layering 

peak is similar to pure NOBOW (Table 3.5.1) in spite of the presence of the polymer, further 

confirming the robust formation of the helical nanofilaments. As expected, the SmA phase of 

M6R8 is nanoconfined in the network of NOBOW nanofilaments. The XRD layering peak 

shown in Figure 3.5.4b is very diffuse and the SmA layers of M6R8 have a finite correlation 

length of ξ~122 Å or about 4 layers. By increasing the concentration of PM6R8, we can 

reduce the correlation length of the SmA phase further to 39 Å, corresponding to just one 

layer, which means that the ordering of smectic layer is limited to the neighboring layer, as 

shown in Figure 3.5.4c in a mixture of c=50% NOBOW/77% M6R8 in PM6R8.  
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Figure 3.5.4: XRD of 90% M6R8 in PM6R8, c=49% NOBOW/90% M6R8 in PM6R8 and 
c=50% NOBOW/77% M6R8 in PM6R8 mixtures. (a) XRD scan of 90% M6R8 in PM6R8 
showing almost resolution-limited SmA peak of M6R8. (b) A diffuse SmA peak of M6R8 is 
detected in a c=49% NOBOW/90% M6R8 in PM6R8 mixture. (c) Only a very weak, broad 
SmA peak of M6R8 is observed in a mixture of c=50% NOBOW/77% M6R8 in PM6R8. The 
high temperature SmC peak of PM6R8 is too weak to be detected in the ternary mixtures. 
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        P3HT is one of the most widely used materials in organic photo voltaic. P3HT is not a 

mesogen but in a solvent forms a suspension of crystalline nano whiskers [62], which are 

similar to the B4 helical nanofilaments, except twisting. Figure 3.5.5a show the XRD scan of 

pure P3HT, which has a diffuse peak around q~0.30 Å-1, due to the finite width of the 

nanowires (finite ordering). However, different from other systems, where the peak is usually 

broadened in the mixture as the phase is nanoconfined in the random network of the B4 

helical nanofilaments and the ordering is only limited to a very short range, the peak from 

P3HT crystal phase in the mixture is sharper than that in the pure sample, which may 

associate with the change of surface tension in the mixture, as shown in Figure 3.5.5b. To 

understand this, the phase diagram of a c=50% NOBOW/P3HT mixture is shown in Figure 

3.5.5c. The binary mixture mixes well in the high temperature isotropic range. Upon cooling, 

instead of the NOBOW B4 phase, P3HT first separates from the isotropic, forming crystals of 

nano whiskers. The same peak position of pure P3HT and NOBOW/P3HT mixture indicates 

that all NOBOW molecules are expelled from the P3HT. After that, only NOBOW molecules 

left, and they undergo I-B2 and B2-B4 phase transitions, which shows the B2 peak at high 

temperature and the B4 peak at low temperature. So there is no nanoconfinement in this case 

but complete phase separation. 
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Figure 3.5.5 XRD of the binary mixture of NOBOW/P3HT. (a) XRD scan of pure P3HT. The 
peak of P3HT crystal phase is diffuse even in a pure sample. (b) XRD scan of a c=50% 
NOBOW/P3HT mixture. The P3HT peak is sharper in the mixture. The small peak to the left 
of the P3HT crystal layering peak is the second harmonic of the NOBOW B4 phase. (c) 
Layer spacing of NOBOW B2 and B4 phases and P3HT crystal phase in a c=50% 
NOBOW/P3HT mixture. The layer spacings are essentially independent of temperature.   
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        From the above discussion, we know that the simple method can prepare the designated 

nanoconfined system. However, we need to characterize the 3D structure of the helical 

nanofilament random network. Nucleation and growth of the helical nanofilaments have been 

characterized. Individual nucleation and growth event has also been detected by highly 

sensitive DSC [64, 65] and it has been proposed that asymmetry in viscoelastic property 

plays an important role in the nano scale phase separation [66]. An example of the nucleation 

and growth of the helical nanofilaments is shown in Figure 3.5.6a. Because the influence of 

the helical nanofilaments, 8CB is randomly aligned, contributing the bright color. Places 

where 8CB is aligned by the glass substrate appear dark. In order to get an overview of the 

structure of the helical nanofilament random network, Figures 3.5.6b and 3.5.6c shows the 

formation of the helical nanofilaments in a reservoir of hexadecane. The helical nanofilament 

random networks appear as sol-gel macroscopically. In the microscopic scale, as shown in 

Figure 3.5.6d, we can identify individual helical nanofilament. Figure 3.5.6e, shows 

individual helical nanofilament near the glass substrate, where the network forms via 

bifurcation growth of helical nanofilaments. Figure 3.5.6f shows the pores formed in the bulk, 

where the material is expelled to the interstitial volume. Complementary to Figure 3.5.6f, 

Figure 3.5.6g shows a plane where most helical nanofilaments intersect the fracture plane 

normally or obliquely. The results provide a direct confirmation of nano-phase separation in 

the binary system, with the NOBOW B4 helical nanofilaments forming a dilute random 

network uniformly distributed in the bulk and the 8CB filling the interstitial volume. A global 

picture emerged from those images is that through the bifurcation growth of helical 

nanofilaments, the helical nanofilament forms a three-dimensional porous structure.  
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Figure 3.5.6: 3D structure of helical nanofilament random network. (a) Fractal growth of 
helical nanofilaments in a c=11% NOBOW/8CB mixture at T=30°C. (b) A c=6.5*10-3 wt% 
NOBOW/hexadecane mixture shows clear isotropic blend at T=100°C (c) At room 
temperature, NOBOW phase separates from hexadecane and forming random network of 
helical nanofilament, appearing as white, gel-like stuff. (d) FFTEM image of a c=25% 
NOBOW/8CB mixture quenched at T=37°C, showing the bulk texture of nanoconfined 8CB 
within the helical nanofilament network. (e) FFTEM image of a c=25% NOBOW/8CB 
mixture quenched at T=37°C, showing individual helical nanofilament near the glass 
substrate. Inset is a model of the chirality-preserving growth of helical nanofilaments, where 
local variations in the elastic energy determine the growth velocity profile of the filament tip 
and lead to spontaneous bifurcation. (f) An example of a nanoconfined system of a c=25% 
NOBOW/8CB mixture, where we see a random network of NOBOW B4 helical 
nanofilaments with 8CB filling the interstitial volume. (g) FFTEM image of a c=25% 
NOBOW/8CB mixture obtained after quenching an open hemispherical sample at T≈80°C 
and cutting it deep into the bulk. Randomly oriented helical imprints of the NOBOW B4 
phase are uniformly distributed in the bulk, while the isotropic 8CB appears as smooth 
regions between the helical imprints. 
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        The nanoconfined system prepared with 8CB confined in silica aerogel has been well 

studied [67]. Therefore, we use the same method described in [68] to further investigate the 

phase property of the material confined by the helical nanofilament network. The 

background- and bulk portion-subtracted peaks I(δq) of a c=60% NOBOW/JR6-65C mixture 

plotted versus |δq|=|q-qo| is shown in Figure 3.5.7. The peaks can be fitted using 

I(δq)=χ/[1+(ξδq)1+κ] quite well as shown in the images. When ξδq>>1, the I(δq) tails fall as 

δq-(1+κ) with κ~1.028, which is slightly larger than 1 and is indicative of a small crossover to anomalous 

elasticity in the nanoconfined systems.  

 

 

Figure 3.5.7: Background- and bulk portion-subtracted peaks I(δq) plotted versus |δq|=|q-qo| 
of a c=60% NOBOW/JR6-65C mixture. The symmetry, i.e. the overlap of the δq>0 and δq<0 

points, indicates suppression of the bulk divergence of ξ||/ξ . Fit to I(δq)=χ/[1+(ξδq)1+κ] is 

excellent with χ~128.2 ,ξ~352.3, κ~1.028. 
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        Compared with conventional porous materials, there are several advantages of preparing 

nanoconfined systems using this method: (1) The pore size of the helical nanofilament 

random network can be easily changed by preparing different concentration of the mixtures, 

or by adding e.g. polymers. (2) The preparation process is simple, where the isotropic blend 

is cooled down to a desired temperature. There is no problem of filling the material or porous 

structure collapsing. (3) The isotropic blends can be filled in any three-dimensional structure, 

e. g. it can be modified to prepare pseudo two-dimensional nanoconfined system such as in 

cells. (4) The chiral boundary condition presented by the B4 helical nanofilaments is unique 

and novel phenomena may appear from this, for example, enables nematic 5CB (achiral rod-

like molecule) to fill space with a chiral director field, which strongly enhances the non-linear 

optical rotation [14]. (5) The chirality of the B4 phase or the chiral boundary condition 

presented by the B4 helical nanofilament can be tuned by chiral dopants [17]. (6) These 

helical nanofilaments can be used as templates for making porous chiral selector materials if 

the chiral boundary condition is strong enough to direct the chemical reaction.  

        In a summary, the B4 phase of bent-core liquid crystals is one of the most complex 

hierarchical self-assemblies in soft materials, with the molecules forming helical 

nanofilaments. We have mixed several materials with NOBOW in order to study their 

behavior in the nanoconfined environment presented by the nanofilament network. All 

systems studied are completely miscible at high temperature, where they are isotropic. In 

mixtures rich in NOBOW, the B4 phase separates from the solution upon cooling, forming 

random networks of helical nanofilaments, leaving the remaining isotropic material in the 

interstitial volumes. This kind of nano phase segregation resulting from the spontaneous 
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nanoscale self-assembly of the nanofilaments offers a novel way of preparing nanoconfined 

fluid systems, e.g. the formation of nanoconfined systems prepared by cooling down isotropic 

mixtures of the B4 material with other materials. Different kinds of nanoconfined systems 

prepared in this way have been described. 
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Chapter 4 

Interface Structure of the Dark Conglomerate Phase  

 

4.1  Introduction 

        Bent-core mesogens have become a major topic of liquid crystal research in recent 

years, with many new phases and interesting phenomena and properties being discovered and 

reported [1, 2, 3]. The dark conglomerate (DC) phase, which appears in some bent-core 

materials immediately below the isotropic phase, is optically isotropic and exhibits 

spontaneous macroscopic chirality. The phase has a characteristic texture, appearing dark 

under crossed polarizers and revealing left- and right-handed chiral domains when the 

polarizers are decrossed [4, 5, 6, 7, 8, 9, 10, 11], properties that early researchers suggested 

could be evidence of disordered layering and a locally chiral organization of the molecules [4, 

11]. The DC phase was recently described as the first known spontaneously chiral isotropic 

fluid phase of achiral molecules, resembling a lyotropic sponge phase [12, 13] with the entire 

volume filled with smectic layers and exhibiting both chiral and polar molecular ordering as 

broken symmetries [14]. Bent-core smectic layers have a tendency to exhibit spontaneous 

saddle-splay curvature which, if strong enough, disorders the planar layering of the smectic 

phase into equilibrium, complex random arrays of focal conic defects which are 

macroscopically isotropic and at the same time macroscopically chiral. The strong tendency 

for saddle-splay layer deformation in the DC phase is attributed to the orthogonal tilt 
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directions of the two molecular half-arms (a1 and a2 in Figure 4.1.1a), which causes dilation 

in one half-layer and compression in the other, producing a frustrated state that can be 

relieved by saddle-splay curvature [14, 16] (Figure 4.1.1b). The birefringence of the DC 

phase is small because of orientational averaging of the optic axis, and the optical rotation is 

a manifestation of the local chiral organization of the molecular director and polarization 

couple [15] and long-range continuity of the smectic layering. While layer curvature motifs 

of the focal conic domains are expected to be a characteristic feature of this phase, until now, 

only amorphous/disordered focal conic domains have been observed.  

 

 
Figure 4.1.1: Phase features of the bent-core liquid crystals. (a) The smectic phase is formed 
from the stacking of fluid layers of bent-core molecules, where the molecular long axis (n) is 
tilted (by an angle θ) relative to the layer normal (z). In addition, polar order of the molecules 
leads to a macroscopic polarization (p) orthogonal to n and z. The projections of the half-
molecular arms (a1 and a2) onto the layer plane (a1

z and a2
z) are nearly perpendicular. The 

four B2 subphases, SmCSPS, SmCSPA, SmCAPS and SmCAPA, consist of the four possible 
bilayer alternations of direction of p and c. (b) In the DC phase, the intralayer structural 
mismatch drives the layers to adopt saddle-splay curvature [14]. (c) In the B7 phase, the layer 
undulations are associated with the formation of periodic polarization splay stripes [30]. 
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4.2  Characterizing the DC phase of Ib 

        In this section, we present freeze fracture transmission electron microscopy (FFTEM), 

x-ray diffraction (XRD), and transmission light microscopy (TLM) data showing that focal 

conic domains in the DC phase of a 4,4´-diphenylmethane (Ar-CH2-Ar) based bent-core 

liquid crystal material, compound Ib in reference [17], self-assemble into fairly ordered 

arrays under a variety of conditions. The chemical structure and phase sequence of this 

compound are shown in Figure 4.2.1a. The aggregation of liquid crystal materials into 

ordered structures via self-assembly is one of the most exciting interdisciplinary research 

areas in condensed matter physics, the best known examples being the cholesteric blue 

phases, which are lattices of nematic disclinations, and the twist grain boundary (TGB) 

phases, which are periodically twisted assemblies of smectic blocks. This class of materials 

has potential applications in optoelectronics, biological membranes, and in the creation of 

nano-patterning templates [18, 19, 20, 21, 22, 23, 24]. 

        The textures observed in the polarized light microscope are typical of the DC phase. On 

cooling from the isotropic phase, the material appears dark under crossed polarizer and 

analyzer, with negligible birefringence. Left- and right-handed chiral domains are observed 

when the polarizers are decrossed, as shown in Figures 4.2.1b and c. On heating from the 

crystal phase, a texture with both dark and highly birefringent regions appears, shown in 

Figure 4.2.1d. We will show below that on heating there is coexistence of the DC and B7 

phases, with the birefringence due to the B7 domains. 
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Figure 4.2.1: Transmission light microscope images of the dark conglomerate phase of Ib at 
140°C. (a) Phase sequence of the bent-core liquid crystal Ib. (b, c) Typical texture of left- and 
right-handed chiral domains observed with decrossed polarizers on cooling. Note that the 
contrast is greatly enhanced here. When the polarizers are crossed, the cell becomes 
uniformly dark. (d) On heating from the crystal phase, the cell shows both dark and 
birefringent domains. Transmission electron microscopy suggests that this is due to the 
coexistence of the DC (dark) and B7 (birefringent) phases.  
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        X-ray scattering, shown in Figures 4.2.2a-c, shows a diffuse Bragg reflection peak, 

reflecting the short-range layer ordering, and prominent 2nd and 3rd harmonics. The profile 

and peak center observed on cooling (blue circles) and heating (black squares) are essentially 

identical, and each harmonic can be fitted to a single Lorentzian (red curves in Figures 

4.2.2a-c) after background subtraction. This kind of disorder strongly resembles the short-

range smectic ordering of 8CB (octylcyanobiphenyl, a liquid crystal forming compound) 

incorporated into the pores of a silica aerogel [25, 26]. In this case, the electron density-

density correlation function is a simple exponential, <ρ(0)ρ(r)>=exp(-r/ξ), with ξ the 

correlation length, analogous to the time correlation function of the random telegrapher’s 

wave [26]. When the correlations are short-ranged and isotropic, the powder x-ray scattering 

intensity I(q) (the static structure factor) is proportional to the Fourier transform of the 

correlation function, yielding a Lorentzian line shape. The peak center and the full width at 

half maximum (FWHM) of the XRD scans are given in Figure 4.2.2d. The higher harmonics 

reveal how the local layer ordering deviates from being perfectly periodic: since the peak 

width increases with the harmonic order, we may conclude that phase fluctuation effects are 

the principal contribution to the disordering in the DC phase, as in other bulk smectics [27]. 
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Figure 4.2.2: X-ray scattering from a powder sample of Ib. (a) X-ray diffraction pattern from 
a sample cooled from isotropic to 143°C (blue dots) and heated from crystal to 148°C (black 
squares). In addition to diffuse Bragg scattering from the smectic layers (n=1), 2nd and 3rd 
harmonics are also observed (b and c). The profile and peak center position observed on 
cooling and heating are essentially identical and show little dependence on temperature. In 
this case, we fit the combined scattering patterns on cooling and heating with a single 
Lorentzian (red curves in (a)-(c)), after subtracting the background signal and centering all 
peaks on Dq=0. The peak center and full width at half maximum (FWHM) of the fitted 
harmonics are indicated in (d). The FWHM increases as the harmonic order goes up, 
indicating that phase fluctuation effects are the main contribution to disorder in the DC phase.    
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        Freeze fracture transmission electron microscopy (FFTEM) is a powerful imaging 

technique that enables direct visualization of the layer structure of smectic liquid crystals [14, 

28]. Several samples of compound Ib in the DC phase with different thermal history were 

prepared, and the layer structure was studied at both glass (Figure 4.2.3) and air (Figure 

4.2.5) surfaces, and along bulk fracture planes (Figure 4.2.4). The transmission electron 

microscopy (TEM) images shown here have been inverted, so that regions facing the 

platinum shadowing direction appear bright, i.e., the topography appears as if illuminated by 

oblique light. Figure 4.2.3a shows a cooled sample fractured near the glass/liquid crystal 

interface, where the layer normal tends to orient parallel to the glass surface. As we can see 

from this image, which is similar to those obtained previously, the bulk DC phase is typically 

made of disordered focal conic domains. At higher magnification (Figure 4.2.3b), well-

defined local smectic layers can be observed, both as faint lines where the layers terminate 

normal to the surface, and as smooth, saddle-shaped domains. This saddle-splay topology is 

consistent with the model proposed to explain the underlying layer organization of this phase 

[14], as shown in Figure 4.2.3c. Figures 4.2.4a and b show further examples of the saddle-

splay topography with layers in the bulk fracture plane at random orientations. 
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        TEM images of the air/liquid crystal interface obtained on cooling from the isotropic 

phase reveal with remarkable clarity a well-ordered array of toric focal conic defects 

(TFCDs) that provide direct confirmation of the plumber’s nightmare model of the DC phase 

(Figure 4.2.5a). Generally, air imposes strong homeotropic alignment at free liquid crystal 

surfaces, forcing smectic layers to form parallel to the surface [29]. The bulk preference for 

saddle-splay curvature in the DC phase is then accommodated at the surface by the formation 

of TFCDs. The internal fluidity of the phase allows these TFCDs to anneal into a quasi-

ordered array, essentially forming a hexagonal close-packed structure with a periodicity of 

about 400 nm, correspond to the minimum elastic free energy [14]. Focal conic domains with 

negative Gaussian curvature have been proposed as a general model for the spatial 

organization of the DC phase [14]. The topology of the focal conic domains at different 

depths is shown in Figure 4.2.5b. The cross section of the surface structure in Figure 4.2.5a is 

depicted in the top image of Figure 4.2.5b. This surface structure should penetrate to some 

extent into the bulk and possible example of ordered FCDs below the surface is shown in the 

middle image of Figure 4.2.5b. Where space is filled predominantly with this type of focal 

conic domains with hexagonal close packing, the plumber’s nightmare structure of Schoen’s 

GW surface describes the three dimensional crystalline structure of the TFCDs well. This 

kind of order may be lost in the bulk, especially when the sample is very thick. The bottom 

image in Figure 4.2.5b shows disordered focal conic domains deep in the bulk, the 

conventional disordered plumber’s nightmare structure. It is clear from typical TEM images, 

such as those shown in Figures 4.2.3 and 4.2.4, that the saddle-splay structure in a cooled 

sample is much less ordered in the bulk than at a free surface. 
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Figure 4.2.5: TEM image of the DC phase at the free surface of a drop of liquid crystal 
material placed on a glass cover slip that was quenched after cooling from isotropic to 140°C. 
(a) Toric focal conic domains (TFCDs) self-assemble into a fairly regular, hexagonal close-
packed structure. The small “pits” in the image are artifacts due to ice crystals which 
condensed on the liquid crystal surface while the quenched sample was being transferred to 
the shadowing machine. (b) Topology of the focal conic domains at different depths. The top 
image shows a cross section of the toric focal conics at the free surface. The middle image 
shows a cross section of possible ordered toric focal conic domains some distance below the 
surface, which can be modeled by plumber’s nightmare structure (Schoen’s GW surface) to 
construct a three dimensional crystalline structure with six-fold symmetry. The bottom image 
shows disordered focal conic domains deep in the bulk, organized in the conventional 
disordered plumber’s nightmare structure. 
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        As in most bent-core systems, however, the morphology and phase of compound Ib 

depend on the thermal trajectory. The bulk DC structure seen on heating, shown in Figure 

4.2.6a (expanded in Figure 4.2.6b), is much more regular than that observed on cooling, and 

strongly resembles the ordered structure observed at the air/liquid crystal interface on cooling 

(Figure 4.2.5a). The layers are highly curved, with features characteristic of saddle-splay 

topology and periodicity similar to that seen on cooling. In addition, B7 regions, identifiable 

by their characteristic layer undulations (Figure 4.1.1c) [30], here with periodicity p~60 nm 

(see Figure 4.2.7), are seen in coexistence with DC regions. However, in the regions with 

typical DC texture the layers are locally smooth and there is no evidence of layer undulations, 

which, if the undulations had the same periodicity as on flat surfaces, would be apparent on 

the saddle-splay topography of Figure 4.2.6. As noted above, the optical texture obtained on 

heating from the crystal phase, shown in Figure 4.2.1d, shows both birefringent and dark 

regions. This is due to the coexistence of the highly birefringent B7 phase and the isotropic 

DC phase. The coexistence of these two phases is also observed in the three materials 

investigated in reference [14], with the two textures even overlaid in CITRO, where distinct 

saddle-shaped domains are decorated with B7 layer undulations. It seems that the saddle-

splay curvature driven by the intra-layer structural mismatch and the layer undulations 

associated with periodic polarization splay stripes are independent of each other and may 

occur either separately or simultaneously. 
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Figure 4.2.6: FFTEM images of the dark conglomerate phase. The sample was quenched after 
heating from the crystal phase to 140°C, and then fractured in the bulk. (a) As with the cooled 
sample in Figure 4.2.4, features characteristic of saddle-splay topology are observed, with the 
curved layers forming an ordered structure reminiscent of the toric focal conic domains of 
Figure 4.2.5. (b) Instead of the amorphous arrangement seen on cooling from the isotropic 
phase, the saddle-splay regions are quite well ordered here, with hexagonal close-packing. 
 

 

 
Figure: 4.2.7: FFTEM image of the B7 phase quenched after heating from the crystal phase to 
140°C, and then fractured in the bulk. The smectic layers are oriented parallel to the fracture 
plane and show typical B7 layer undulations. Several layer steps can also be identified in this 
image.
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        In a summary, it has been shown previously that the DC phase energetically prefers 

smectic layers with saddle-splay deformation and that focal conic domains (FCDs) with 

negative Gaussian curvature, characterize the spatial organization of the DC phase in this 

case [14]. However, the observation of globally disordered FCDs on cooling may arise from 

some sort of quenched disorder which stabilizes a glassy array of focal conics. In the present 

study of a 4,4´-diphenylmethane based bent-core material, at the air/liquid crystal interface, 

because of the homeotropic alignment imposed by air, the intrinsic preference for saddle-

splay curvature and the fluidity of the liquid crystal phase, the FCDs anneal into a quasi-

ordered array, which may be thermodynamically preferred. On heating from the crystal 

phase, the ordering of the FCDs is also enhanced in the bulk, and B7 regions are seen in 

coexistence with the DC structure. The absence of quenched disorder at the air/liquid crystal 

interface, and in the bulk upon heating into the DC phase, suggests that the bulk ordering of 

the DC phase is thermodynamically close by and that under the right conditions three 

dimensional periodic focal conic arrays may be achievable in this phase, which opens the 

way for the development of two-dimensional or even three-dimensional periodic dielectric 

media for photonic crystal applications.   
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4.3  Topography of the B4, B7 and DC phases at the air/liquid crystal interface 

        Bent-core liquid crystal molecules have attracted intense interest due to the interplay of 

chirality, molecular bend and molecular tilt [31] and have exhibited a set of peculiar phases 

named as B1-B8, none of which exists in rod-like liquid crystals. Among these phases, the B4 

(helical nanofilament driven by saddle-splay curvature), B7 (layer undulation driven by 

polarization modulation), and DC phases (disordered focal conic driven by saddle-splay 

curvature) are particular interesting, forming fantastic, complex microstructures [14, 16, 30]. 

Though the structural bases of these phases have already been clarified and researchers have 

directly observed these structural elements in the bulk by freeze-fracture transmission 

electron microscopy (FFTEM), not much attention has been paid to the surface structures of 

these phases. At the air/liquid crystal interface, there is no confinement on the liquid crystal 

and the molecules are free to flow in response to the internal stress raised during the 

formation of the liquid crystal phase. Usually liquid crystal molecules prefer to align 

homeotropically at the interface. This kind of alignment by nature is homogeneous 

everywhere and imposes rotational and translational symmetry at the interface. Combined 

with the fluidity of the liquid crystal phase, the bulk structure will compromise and anneal 

into more ordered structure at the interface. We have observed a variety of different surface 

topographies, some of which are totally different from the bulk structures, confirming that the 

intrinsic fluidity of the liquid crystal phases and homeotropic alignment at the air/liquid 

crystal interface enhances the self-assembly of bent-core molecules. 

        In this section, we will describe the surface topographies of the B4, B7 and DC phases 

of bent-core molecules at the air/liquid crystal interface. Though these phases have different 
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structures, they are correlated with each other. For example, the layer undulations of the B7 

phase can be observed in the disordered focal conics of the DC phase [14], both the B4 and 

DC phases are driven by intra-molecular mismatch [14, 16], and the ground states of the B4, 

B7 and DC phases are supposed to be synclinic and ferroelectric. Studies of the surface 

topography will help people further understand the microstructure of these phases and 

demonstrate the potential application of periodic surface structures as two-dimensional or 

even three-dimensional photonic crystals. The prerequisite for applications, however, is 

understanding the type, size and spatial distribution of the defect domains at the surface, a 

topic which will be discussed in detail in this section.  

 

Surface structure of the B4 phase 

        The B4 phase is one of the most complex hierarchical self-assemblies known in soft 

materials. The chemical structure and phase sequence of NOBOW is shown in Figure 4.3.1a, 

and the surface topography of the B4 phase at the air/liquid crystal interface in Figure 4.3.1b. 

Individual helical nanofilaments can clearly be identified at the surface. Locally, helical 

nanofilaments form coherent, homochiral arrays, which can be well understood in terms of 

the chirality-preserving growth of the filaments (section 3.2 in Chapter 3). The measured 

filament width w=35 nm and half pitch p=115 nm are consistent with that in the bulk (for 

example, Figure 3.2.5 in Chapter 3, showing conventional FFTEM images where the samples 

are fractured before coating and the replicas show the structure in the bulk). B4 helical 

nanofilaments appear to be quite robust, with the structure retained from the bulk to the 

surface. 
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Figure 4.3.1: Helical nanofilaments of NOBOW in the B4 phase. (a) Chemical structure and 
phase sequence of NOBOW. (b) TEM image of NOBOW B4 phase quenched at 140°C, 
showing an array of homochiral helical nanofilaments. The inset shows a model of a single 
twisting helical nanofilament. The measured filament width w is 35 nm and half pitch p is 
115nm.
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Surface structure of the B7 phase 

        In order to investigate the surface topography of the B7 phase, we prepared samples of 

MHOBOW (Figure 4.3.2a). The layer undulations appear as narrow, faint lines between the 

layer steps, which appear as wide, dark lines, as shown in Figure 4.3.2b. The polarization 

modulation coupled layer undulations in the B7 phase have been clarified and layer 

undulations have been directly observed in the FFTEM images (for example, Figure 5.2.2 in 

Chapter 5). However, FFTEM images of MHOBOW fractured in the bulk only show smooth, 

sinusoidal layer undulations and so far there has been no direct evidence that the sinusoidal 

layer undulations correspond to individual polarization modulation stripes, the fine structure 

of the B7 phase. At the air/liquid crystal interface, a characteristic feature of the layer 

undulations is that their grooves all go along the layer edges, which means that the 

polarization modulation stripes tend to anneal along the layer edges during formation. This 

strongly supports the notion that the layer undulations are made of individual polarization 

modulation stripes, as the stripes have the property of layering at the layer edges, as modeled 

in Figure 4.3.2c.  
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Figure 4.3.2: Layer undulations of MHOBOW in the B7 phase. (a) Chemical structure and 
phase sequence of MHOBOW. (b) TEM image of MHOBOW in the B7 phase quenched at 
130°C. Both layer undulations (narrow, faint lines) and layer steps (wide, dark lines) can be 
distinguished, where the grooves of layer undulations tend to be parallel to the layer steps. 
The measured periodicity of the layer undulations is 27 nm. (c) Model showing layer 
undulations made of individual polarization modulation stripes whose edges coincides with 
the layer steps. The green lines represent defect walls between different polarization 
modulation stripes. 
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Surface structure of the dark conglomerate phase 

        The dark conglomerate (DC) phase, a chiral, isotropic liquid, shows globally-disordered 

focal conic domains in the bulk (for example, Figure 4.2.4 in Chapter 4). At the air/liquid 

crystal interface, due to the homeotropic alignment, the fluidity of the liquid crystal phase, 

and a preference for saddle-splay curvature, toric focal conic domains self-assemble into a 

quasi-ordered hexagonal lattice (section 4.2 in Chapter 4). This kind of surface topography is 

a common feature of the DC phase, having been observed in many materials which form the 

DC phase, such as W508, shown in Figure 4.3.3. Indentifying the DC phase through the 

surface structure is much easier than through the bulk structure as some other phases (such as 

the B2) may also show the focal conic structure in the bulk. Calamitic molecules have been 

known to form toric focal conic arrays in microchannels. This requires planar alignment at 

the bottom interface and homeotropic alignment at the top, constraints which can be 

reconciled by adopting a toric topology, forming toric focal conic domains with two-

dimensional order. In the case of the DC phase of bent-core molecules, there is no effect from 

the surface polarity of the substrate. The periodicity of toric focal conic domains in the DC 

phase (several hundred nm) is much smaller than those in rod-like liquid crystals (several 

µm), and, since it is in the visible light range, they could be used as optical gratings.  
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Figure 4.3.3: Toric focal conics of W508 in the DC phase. (a) Chemical structure and phase 
sequence of W508. (b) TEM image of the DC phase quenched at 160°C. Due to the 
homeotropic alignment of the air interface, the fluidity of the DC phase, and the preference 
for saddle-splay curvature, a sub-micron array of toric focal conics covers the entire surface. 
The measured distance between neighboring toric focal conics is 325 nm. (c) Higher 
magnification of the surface structure, with the inset showing a cross-section of a TFC below 
the surface. 
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        We previously reported the formation of quasi-ordered toric focal conic array in the DC 

phase of the compound Ib (chemical structure and phase sequence shown in Figure 4.3.4a) at 

the air/liquid crystal interface (section 4.2 in Chapter 4). In a further study of this material, 

we have found that at the surface, in addition to the quasi-ordered toric focal conic domains, 

other surface topographies are also observed. As shown in Figures 4.3.4b and d, for example, 

we see one-dimensional and two-dimensional layer undulation patterns. The one-dimensional 

layer undulation is different from B7 layer undulations (Figure 4.3.2) in that the valleys and 

peaks are different, i.e., the undulation is not sinusoidal. The one-dimensional layer 

undulation can be modeled as a one-dimensional parabolic focal conic array, as shown in 

Figure 4.3.4c. Sometimes, the two-dimensional layer undulations form a fairly regular lattice 

which can be modeled as a two-dimensional parabolic focal conic array (inset, Figure 4.3.4d). 

Parabolic focal conic arrays have been observed before, for example in dilated SmA cells 

[32], however, they form only under external stimulus in rod-like materials. The reason that 

parabolic focal conic arrays form spontaneously at the free surface of bent-core materials is 

unknown, but is presumably driven by the complex interplay of molecular polarization, bend, 

and tilt. 
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Figure 4.3.4: Parabolic focal conics of Ib in the DC phase. (a) Chemical structure and phase 
sequence of Ib. (b) TEM image of the DC phase quenched at 140°C, showing a one-
dimensional layer undulation pattern. (c) Model of (a) as a one-dimensional parabolic focal 
conic array. (d) TEM image of the DC phase showing a periodic, two-dimensional layer 
undulation pattern, modeled in the inset as a two-dimensional parabolic focal conic array. 
The measured periodicities of the two-dimensional layer undulation are 215 nm and 134 nm 
respectively.
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        In all the current preparation, we investigated the surface structures on samples at least 

500 µm thick. In this case, the homeotropic aligning field of the air/liquid crystal interface is 

the main influence on the surface structure, the glass substrate being too far from the surface 

to be important. In thin films, on the scale of 1 µm, more interesting self-assembled structures 

are expected to emerge from the bent-core molecules, as the surface alignment from the 

substrate and from the air interface compete. The examples shown here suggest that there are 

still lots of interesting surface structures waiting to be discovered. The self-assembly of 

surface structures with unique rheological and optical properties could potentially be 

exploited to make novel materials. 

        In a summary, the surface structures of the B4, B7 and DC phases of bent-core 

molecules have been described. In these phases, bent-core molecules undergo complex self-

assembly, forming helical nanofilaments (the B4 phase), layer undulations (the B7 phase) and 

disordered focal conics (the DC phase) in the bulk. Complementary to freeze-fracture 

transmission electron microscopy (FFTEM) images which reveal the bulk structure of these 

phases, the surface structures give insight into the underlying structural bases of these phases, 

and show novel examples of self-assembly, due to the fluidity of the phases and the 

homeotropic alignment of the interface. The combination of bulk and surface studies is a 

powerful approach to characterize the liquid crystal phases. In addition, the regularity of the 

surface structures suggests that they could be used to make novel optical materials such as 

dielectric arrays, as the defect domains at the surface structure possess unique optical 

properties. 
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Chapter 5 

 B7 Layer Undulation Defects: An Exotic System 

 

5.1  Introduction 

        Bent-core mesogens have become a major topic of liquid crystal research in recent years, 

with many interesting phases and properties, deriving from the interplay of molecular bend, 

molecular tilt and molecular polarization [1]. Alternative combinations of the polar direction and 

the molecular tilt direction gives the four basic bilayer phases named SmCAPA, SmCAPF, 

SmCSPA, and SmCSPF, respectively. All these phases have been found in bent-core mesogens 

and have been extensively studied. The SmCSPF phase shows three interesting, distinct 

thermodynamic states, the B4 phase, the DC phase and the B7 phase, where the B4 phase is 

made of helical nanofilaments, the DC phase is dominated by disordered focal conics, and the B7 

phase is composed of polarization modulation stripes coupled layer undulations. These 

microstructures are stable in the sense of being local minima in the free energy. In this chapter, 

we will mainly discuss the B7 phase. On slowly cooling the isotropic liquid, helical filaments of 

the B7 phase appear and coalesce to form a variety of beautiful optical textures, such as striped 

focal conics, chessboard-like textures, banana-leaf-like textures and ribbon-like textures [2, 3]. A 

stack of synclinic, ferroelectric layers could in principle lower its free energy by organizing the 

molecules in a polarization-splay-modulated state, as sketched in Figure 5.1.1a. The periodic 

supermolecular-scale polarization modulation stripes coupled to layer undulations have been 

directly confirmed by the freeze fracture transmission electron microscopy (FFTEM) images of 
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the B7 phase [2]. X-ray scattering patterns which show multiple satellite peaks around the first-

order layer reflection peak also indicate the two-dimensional periodic structures, the smectic 

layers (along the layer normal) and the layer undulations (along the layer plane). While under a 

threshold electric field, the transition between the polarization modulated state and the 

ferroelectric state of flat layers has been observed through the microbeam x-ray diffraction. After 

removal of the electric field, the ferroelectric state of flat layers thermally returns to the 

polarization modulated state [4].  

        There are still many mysteries about the B7 phase. For example, the first successful drawing 

of filaments from a liquid crystal bath of bent-core materials has been with the B7 phase [5]. The 

formation of stable freely standing filaments in the B7 liquid crystal phase against the Raleigh-

Plateau instability is a fascinating and challenging phenomenon found in complex, non 

Newtonian liquids [6, 7]. The mechanical properties of the B7 freely standing filaments have 

also been characterized [8].  

        Though the use of topology and geometry to understand the physical world is commonplace, 

we will show below that exploiting the topological defects of the layer undulations paves the 

way for a novel understanding of the B7 phase. In general, macroscopic polarization in the liquid 

crystal phase costs very high energy and polarization splay is preferred to avoid any macroscopic 

polarization. This polarization splay can be accommodated by adopting a texture having a series 

of stripes when there are proper defect structures between them. As shown in Figure 5.1.1a, the 

macroscopic polarization is relieved by the polarization splay with the polarization spreading out 

from the center of the stripe. Because of the stronger layer fluctuation near the defect walls, the 

layers dilate at the boundaries. This kind of layer expansion at the polarization stripe boundary is 

frustrated, where the space cannot be fully filled by the layers, as shown in Figure 5.1.1b. In 
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order to establish a uniform layer pitch along s, the layers at the center of the stripe must be tilted. 

Based on the different combinations of the molecular tilt direction and the molecular polarization 

direction, there are four kinds of polarization splay stripes, as shown in Figures 5.1.1c-f, with 

layers displace down in Figures 5.1.1c and e and layers displace up in Figures 5.1.1d and f. In 

this case, even though the layer spacing at the center of the stripe is smaller than those at the 

boundary, the smectic layers have a uniform layer pitch along sԦ. Each polarization modulation 

stripe is coupled to a half pitch of the layer undulation. Because there are four kinds of 

polarization modulation stripes, the detailed arrangement of the polarization modulation stripes 

in the layer undulation is still very complicated. Investigation of the B7 layer undulation defects 

will help us better understand how the polarization modulation stripes are arranged in the layer 

undulation. The chemical structure and phase sequence of the material investigated are shown in 

Figures 5.1.2a-c. 
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Figure 5.1.1: Model of polarization modulation stripes driven by the polarization splay. (a) In 
order to escape any macroscopic polarization, the polarization tends to splay within the layers. 
This kind of polarization splay can be accommodated by adopting a texture having a series of 
stripes when there are proper defect structures at the boundary of each stripe. (b) Because of the 
stronger layer fluctuation near the defect walls, the layers dilate at the boundaries. This kind of 
layer expansion at the stripe boundary is frustrated, which can be relieved by forming the 
polarization modulation stripes. (c)-(f) The four kinds of polarization modulation stripes of 
different molecular tilt and polarization direction. In all cases, the layer spacing at the center of 
the stripe is smaller than those at the boundary, while the layer pitch along sԦ is uniform. Tees 
indicate the projection of the bent-core molecules, where the bar indicates the end near to the 
reader.  
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Figure 5.1.2: Chemical structure and phase sequence of PAT11, RD7, MHOBOW. 
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5.2  B7 layer undulation defects 

        Though the layer undulation of the B7 phase has been confirmed by the FFTEM images for 

a long time, there is still no direct evidence, supporting the model that the layer undulation is 

made of individual polarization modulation stripes. The FFTEM image and free surface TEM 

image shown in Figures 5.2.1a and b respectively show that each polarization modulation stripe 

has a distinct boundary and strongly support the model that the layer undulation is made of 

individual polarization modulation stripes. In both images, the layer steps appear as wide lines 

while the narrow lines show the layer undulation in the layer plane. Interestingly, as shown in 

Figure 5.2.1a, the fractured layer steps tend to go along the edges of the polarization modulation 

stripes, which indicates that the polarization modulation stripes have a distinct boundary. 

Consistent with the FFTEM image, the TEM image of the B7 phase at the air/liquid crystal 

interface show that each layer edge coincides with the boundary of the polarization modulation 

stripes, as shown in Figure 5.2.1b. This means that during the formation of the layer undulation, 

the boundaries of the polarization modulation stripes naturally anneal along the layer edges. This 

also indicates that in the B7 phase, the molecules first self-assemble into smectic layers and then 

the layer undulation develops. This is consistent with the argument below on the spiral patterns 

of the layer undulation. 
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Figure 5.2.1: FFTEM image and free surface TEM image of the B7 layer undulations. (a) 
FFTEM image of RD7, showing the bulk topography of the B7 phase. (b) Free surface TEM 
image of MHOBOW, showing the topography of the B7 phase at the air/liquid crystal interface. 
In both images, the smectic layers are parallel to the image plane. The wide lines indicate the 
layer steps while the narrow lines show the layer undulations. As shown in (a), the fractured 
layer steps mostly run along the edges of the polarization modulation stripes. While in (b), at the 
air/liquid crystal surface, the boundaries of the polarization modulation stripes anneal along the 
layer steps. 
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        In the study of the B7 layer undulation, we find that the layer undulation shows undulation 

defects (e.g. the dislocation and the disclination defects) analogous to those observed in the 

layered system. The typical topography of the B7 layer undulation is shown in Figure 5.2.2a, 

where the layer plane is parallel to the fracture plane with occasional layer steps and the layer 

undulation is in the layer plane. Two different kinds of edge dislocations can be observed in the 

layer undulation, corresponding to the annihilation of the undulation peak and the annihilation of 

the undulation valley, respectively (examples are highlighted in the white boxes). The regions 

around the edge dislocations are very smooth. Therefore, it’s reasonable to assume that the 

polarization direction and the molecular tilt undergo a continuous change around the undulation 

defects, as modeled in Figures 5.2.2b and c. This assumption puts a strong constraint on the 

possible configuration of the polarization direction and the molecular tilt for the undulation peak 

and the undulation valley, and requires that neighboring polarization modulation stripes have 

opposite polarization directions and molecular tilts. The two possible configurations for the 

undulation peak are shown in Figures 5.2.2d-e and the two possible configurations for the 

undulation valley are shown in Figures 5.2.2f-g. In a macroscopic region of the layer undulation, 

the edge dislocation can happen anywhere between any two adjacent polarization modulation 

stripes, that is the annihilation of any undulation peak or any undulation valley. Therefore, there 

are only two possible molecular arrangements in the layer undulation, as shown in Figures 5.2.2h 

and i, respectively. Though the adjacent polarization modulation stripes are of opposite 

polarization directions and opposite molecular tilts, the layer undulation are macroscopically 

chiral, either left-handed (Figure 5.2.2h, zԦxnሬԦ ൌ pሬԦ) or right-handed (Figure 5.2.2i, zԦxnሬԦ ൌ െpሬԦ). We 

will show below that the layer undulation coupled with the layer chirality forms the clockwise or 

anticlockwise spiral pattern.  
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Figure 5.2.2: Edge dislocations of the B7 layer undulation. (a) FFTEM image of Ib with layers 
parallel to the fracture plane. Occasional layer steps can be distinguished in the image and the 
measured periodicity of the layer undulation is p≈53 nm. Examples of the edge dislocations are 
highlighted using the white boxes. The smooth appearance of the regions near the dislocation 
lines suggests the continuous change of the polarization direction and the molecular tilt around 
the undulation defect. Under this assumption, (b) shows the possible polarization direction in 
each polarization modulation stripe near the edge dislocation where a layer undulation peak 
disappears. The polarization directions of neighboring stripes are always in the opposite direction 
with each other. The peaks of the layer undulation are marked with thick dark lines. The valleys 
of the layer undulation are the boundaries where two different color polarization modulation 
stripes meet. The dislocation line is marked by the green dot. (c) shows the possible polarization 
direction in each polarization modulations stripe near the edge dislocation where a layer 
undulation valley disappears. Based on the four kinds of polarization splay stipe shown in 
Figures 5.1.1c-f, under the constraint of continuous change of the polarization direction and the 
molecular tilt around the layer undulation defects, there are two kinds of molecular arrangement 
for the undulation peak, as shown in (d) and (e) with the green arrow pointing up, and two kinds 
of molecular arrangement for the undulation valley, as shown in (f) and (g) with the green arrow 
pointing down. To ensure the annihilation of any undulation peak or undulation valley (any 
neighboring polarization modulation stripes), there are only two possible molecular 
arrangements in the layer undulation, as modeled in (h) and (i), respectively, both of which are 
macroscopically chiral. 
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        Figure 5.2.3a shows the clockwise and anticlockwise spiral patterns formed by the layer 

undulation where the layer plane is parallel to the fracture surface with the layer undulation 

superimposed into the layer surface. There are distinct boundaries between different spiral 

patterns, indicating some repulsion force at the boundaries between neighboring layer undulation 

domains, even between clockwise and clockwise spirals. The formation of the spiral structure 

which usually starts from the center indicates that the layer and the layer undulation of the B7 

phase develop independently at the I-B7 phase transition [9]. In the B7 phase, the flat layer 

structure forms first. Then the layer undulation nucleates and grows, which forms the spiral 

pattern. When different spiral patterns meet each other, the width of the polarization modulation 

stripe is compressed due to the repulsion from neighboring layer undulation domains. As 

discussed in the previous paragraph, the layer undulation of the B7 phase is made of polarization 

modulation stripes of same chirality and the layer undulation is macroscopically chiral. The 

appearance of clockwise and anticlockwise spiral patterns is also a direct indication of the chiral 

nature of the smectic layers in the B7 phase, a result we obtained from the analysis of the 

undulation defects. Although the transfers of the microscopic level (molecular) chirality to the 

macroscopic level (structural) chirality have been known for a long time and different 

macroscopic chiral structures formed by chiral molecules have been reported, for example the 

cholesteric phase, the blue phase, the TGB phase and so on formed of chiral rod-like molecules. 

Though the sample used here is racemic, the layers of the B7 phase are still chiral (layer 

chirality). Therefore the chiral spiral pattern is induced by the layer chirality not the molecular 

chirality. This is a second example where the layer chirality transfers to the macroscopic chirality, 

e.g. the clockwise and anticlockwise spiral patterns in the B7 phase. The first example is the 
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helical nanofilament of the B4 phase of achiral bent-core molecules, which is made of left- and 

right-handed helical nanofilaments.  

 

 

Figure 5.2.3: Clockwise and anticlockwise spiral patterns formed by the layer undulations. (a) 
Spiral texture of the layer undulation showing different chiral signs, clockwise or anticlockwise. 
It seems that in the B7 phase it first forms the flat layers, and then the layer undulations appear 
via a nucleation and growth process. (b) Model of the spiral structure with the white arrows 
representing the polarization direction and the dark lines showing the undulation peaks.  
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        The most commonly observed one-dimensional, periodic layer undulation pattern can 

develop far from the spiral center, as shown in Figure 5.2.4. Usually, the morphology of the layer 

undulation strongly depends on the environment, e.g. the confinement from neighboring layer 

undulation domains. The spiral pattern shown in Figure 5.2.4a is deformed along one direction, 

where there is no constraint from neighboring undulation domains, and the layer undulation 

develops into one-dimensional, periodic stripe. The transition from the spiral structure to the 

periodic stripe is mediated through a disclination line, as modeled in Figure 5.2.4b. Therefore, 

the most commonly observed one-dimensional, periodic layer undulation originates from the 

spiral pattern and is part of the spiral structure. In other words, all these layer undulations are 

macroscopically chiral, which is a manifestation of chirality transfer from layer chirality 

(microscopic) to structural chirality (macroscopic).  

 

 

Figure 5.2.4: Deformed spiral pattern of the B7 layer undulation. (a) The spiral conformation of 
the layer undulation can be deformed upon the surrounding environment. One-dimensional, 
periodic layer undulation pattern can be obtained far from the spiral center. (b) Model of the 
deformed spiral structure showing the polarization direction of each polarization modulation 
stripe near the disclination defect. 
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        As we notice in Figure 5.2.5a, the width of the polarization modulation stripe becomes 

narrower and narrower away from the spiral center, due to the repulsion from neighboring layer 

undulation domains. In order to investigate the elastic property of the polarization modulation 

stripe, the width of the polarization modulation stripe as a function of distance away from the 

spiral center is shown in Figure 5.2.5. When it is close to the spiral center, the width of the stripe 

undergoes an exponential decrease as it moves away from the center. When it is far away from 

the spiral center, the width of the stripe stays constant which means that they cannot be 

compressed anymore. This behavior indicates that the polarization modulation stripe may be 

treated as an elastic stripe when considering the elastic energy of the B7 phase. 

 

 

Figure 5.2.5: The elasticity of the layer undulation. (a) Clockwise and anticlockwise spiral 
patterns of the layer undulations (Figure 5.2.3a is reproduced here for convenience). (b) The 
width of the polarization modulation stripes as a function of distance away from the spiral center. 
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        In a summary, in bent-core liquid crystal phases, the strong local preference for layering, 

coupled with the bent shape of the molecules, leads to two spontaneous symmetry-breaking 

instabilities: polar molecular orientational ordering and molecular tilt. These instabilities 

combine to produce chiral, layered phases including the B2, B7 and so on. The B7 phase is the 

best known liquid crystal phase with two dimensional periodicities, the layers and the layer 

undulations, where the layer undulation is associated with the formation of periodic polarization 

splay stripes. Investigation of the defects of the layer undulation gives insight into the molecular 

organization of the polarization splay stripes in the B7 phase. The polarization direction and the 

molecular tilt of the B7 layer undulation can be determined through the analysis of the defect 

structure. Though neighboring polarization modulation stripes are of opposite polarization 

directions and opposite molecular tilts, the layers are macroscopically chiral. This kind of layer 

chirality is expressed through the formation of clockwise and anticlockwise spiral patterns.  
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5.3  The texture of the B7 phase: Helical filaments of the smectic layers 

        As mentioned before, the B7 phase shows extremely beautiful optical textures among all the 

other liquid crystal phases. In this section, we will discuss the texture of the B7 phase and seek 

the possible organization of the smectic layers behind those textures. So far, various optical 

textures have been observed in the B7 phase, such as the chessboard texture, banana-leaf-like 

texture and so on. However, the most interesting phenomenon of the B7 phase is the formation of 

different kinds of helical filaments from the isotropic medium. Examples of the helical filaments 

in the B7 phase are shown in Figures 5.3.1a-d. The helical filaments show different optical 

textures under crossed polarizers. The step by step filament growth in the B7 phase is also 

highlighted in Figures 5.3.1a-d. The picture emerged from this growth morphology is that the 

filament twists as it grows, forming alternative black and white spots. Though previous studies 

indicate that the helical filaments consist of concentric smectic layers [10], we propose that the 

helical filaments are formed by twisted ribbons of smectic layers within the isotropic medium 

and that the ribbons of smectic layers are the fundamental structural basis of the B7 texture, as 

the ribbons form in the early stage of the Iso-B7 phase transition and these ribbons eventually 

coalesce to form e.g. the chessboard texture and so on. The appearance of twisting ribbons of 

smectic layers is also a direct indication of the chiral nature of the smectic layers in the B7 phase 

as discussed in the previous section. Below, we will show how the textures observed in the B7 

phase can be constructed by the twisting ribbons of smectic layers and the evidence that 

supporting the idea. 
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Figure 5.3.1: Step by step filament growth in the B7 phase. (a), (b), (c) and (d) Sequence of 
DTLM images, showing the step by step filament growth in the B7 phase. The filament tip is 
highlighted using the yellow arrow in each image. 
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        Figures 5.3.2a and b show the commonly observed chessboard texture and ribbon texture of 

the B7 phase, respectively. Besides those high birefringent textures, low birefringence regions 

are observed coexistent with them in the B7 phase (Figure 5.3.2b, upper right, and Figure 5.3.2c). 

Those textures are overall of very low birefringence and appear grey under crossed polarizers. 

As we have proposed, all these textures can be constructed from the twisting ribbons of smectic 

layers. Models of single twisting ribbons and double twisting ribbons of the smectic layers in the 

B7 phase are shown in Figure 5.3.2d. The directors of the molecules have been shown along 

each ribbon. Under crossed polarizers, the single twisting ribbon appears as alternative bright 

and dark spots, as the directors of the molecules in the smectic layers change periodically. When 

the single twisting ribbons are arranged in arrays, the chessboard texture is obtained when 

neighboring twisting ribbons are 180° out phase. For the double twisting ribbons, because of the 

almost orthogonal molecular tilt directions in those two ribbons, the double twisting ribbons 

overall have a very low birefringence. Therefore, any texture composed of double twisting 

ribbons has a very low birefringence. The remaining question is why these helical filaments only 

exist in the B7 phase or what drives the formation of twisting ribbons of smectic layers in the B7 

phase. People has observed the spontaneous formation of striped and labyrinthine textures of the 

c-director in freely suspended polar smectic SmCPF films, which indicates a negative effective 

bend constant [11]. The formation of helical filament may be attributed to the special elastic 

constant of the B7 phase. The phenomena we observed in the B2 phase of NOBOW in a c=10% 

8CB/NOBOW mixture (c is the weight percent of 8CB in the mixture) can help us better 

understand this. 
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Figure 5.3.2: Different kinds of optical textures of the MHOBOW B7 phase taken at T=125°C, 
cooling from isotropic at 0.01°C/min. (a) The chessboard texture of the B7 phase. (b) The ribbon 
texture of the B7 phase. (c) The low birefringent texture of the B7 phase. (d) Single twisting 
ribbons of smectic layers and double twisting ribbons in the B7 phase with the molecular director 
shown along each ribbon.  
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        In the B2 phase, smectic layers usually organized in the focal conic structure. Therefore, the 

B2 phase usually shows the typical focal conic texture. However, the optical textures of the B2 

phase of a c=10% 8CB/NOBOW mixture don’t look like the conventional focal conic texture, 

but strongly resemble the texture observed in the B7 phase, as shown in Figures 5.3.3a-d. As 

discussed in Chapter 3, due to the freezing point depression, with low concentrations of 8CB, the 

I-B2 phase transition of NOBOW is depressed in the mixture. However, 8CB is insoluble in the 

B2 phase of NOBOW. On cooling from the isotropic, NOBOW first phase separates and form 

the B2 phase. However, the smectic layers of the B2 phase formed in the mixture behave totally 

differently from that of the pure sample and optical textures similar as those in the B7 phase have 

been observed. The underlying reason is still unknown. It seems that in the mixture the surface 

tension has changed and it plays an important role in the formation of the B7 like textures.  

        In a summary, we have shown the fantastic textures of the B7 phase. Twisting ribbons of 

smectic layers has been proposed as the structural basis of the B7 texture. The various B7 

textures can be constructed from the twisting ribbons of the smectic layers. A B7 like texture is 

observed in the B2 phase of a c=10% 8CB/NOBOW mixture. This phenomenon indicates that 

the surface tension of the smectic layer plays an important role in forming those twisting ribbons 

of smectic layers.  
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Figure 5.3.3: Optical textures of the B2 phase of a c=10% 8CB/NOBOW mixture taken at 
T=160°C, cooling from isotropic at 0.02°C/min. (a) The spiral texture of the B2 phase. (b) The 
ribbon texture of the B2 phase. (c) and (d) The ribbon texture of the B2 phase, where series of 
defects are observed.  
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Chapter 6 

Achiral Structure of the B4 Phase 

 

6.1  Introduction 

        Bent-core liquid crystals have attracted intense interest over the years, exhibiting a wide 

variety of novel structural phenomena involving the interplay of chirality, molecular bend and 

molecular tilt. It has been shown that bent-core molecules have a strong tendency for saddle-

splay layer deformations attributed to the orthogonal tilt directions of the two molecular half-

arms, which cause dilation in one half-layer and compression in the other and produce a 

frustrated state that can be relieved by saddle-splay curvature. If this tendency is strong enough, 

the smectic layers form catenoids or helicoids. In the B4 phase, the tendency for saddle-splay 

curvature coupled with the polarization leads to the formation of chiral helical nanofilaments 

with either clockwise or anticlockwise twist [1]. On the other hand, the dark conglomerate (DC) 

phase driven by the same underlying mechanism forms disordered focal conic domains [2]. Both 

of the B4 and DC phases show macroscopic left- and right-handed chiral domains and diffused 

x-ray scattering peak of the smectic layers with several sub harmonics. However, the DC phase 

usually appears directly from the isotropic medium, while the B4 phase is usually the lowest 

liquid crystal phase in the sample and is still stable at room temperature. The microscopic 

structures of these two phases are totally different, where the B4 phase is made of helical 

nanofilaments and the DC phase is made of disordered focal conics. One possible explanation for 

this is that the B4 phase is entropy favored while the DC phase is enthalpy favored.  
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        Therefore, it would be interesting to further investigate these phases and understand the 

nature of them. By doing freeze-fracture transmission electron microscopy (FFTEM), we have 

studied the microstructure of many low temperature bent-core liquid crystal phases. Those low 

temperature liquid crystal phases are the lowest liquid crystal phases of the samples and are 

stable at room temperature (among all the liquid crystal phases formed by bent-core molecules, 

only the B4 phase is stable at room temperature). Thus, these phases are supposed to be the B4 

phase. However, some interesting microstructures of those phases have been revealed by FFTEM 

images, which will be discussed in detail in the following sections. 
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6.2  P-12-OPIMB: Achiral B4 structure 

          The P-n-OPIMB series first synthesized by Prof. Junji Watanabe was reported as the first 

material indicating helical structure in the bent-core molecular systems [3 ]. The chemical 

structure and the phase sequence of the P-n-OPIMB series are shown in Figure 6.2.1. The 

molecules are symmetric and possess typical Schiff bases. In the P-n-OPIMB series, from the 

short alkyl tail bent-core molecule (n=6) to the long alkyl tail bent-core molecule (n=16), the 

molecular length increases as the alkyl tail becomes longer and the increase of molecular length 

shows typical odd-even effects, as shown in Table 6.2.1. Corresponding to the increase of the 

molecular length, the range of the B3 phase becomes smaller and smaller and disappears at P-12-

OPIMB. In spite of the difference in the phase sequence between molecules with short and long 

alkyl tails, helical nanofilaments of the B4 phase have been confirmed in the P-n-OPIMB series. 

Figures 6.2.2a-c show unambiguous helical nanofilaments in the B4 phase of P-8-OPIMB, P-12-

OPIMB and P-16-OPIMB, respectively. 

        However, in the study of the P-n-OPIMB series, we observe a coexistence of helical 

nanofilaments and another microstructure in the B4 phase of P-12-OPIMB. This microstructure 

which we call achiral B4 structure is dominated by saddle-splay curvature and shows no helical 

twist. Though we have shown in Chapter 3 that at the interface of the glass substrate, due to the 

geometry confinement, parabolic focal conic or toric focal conic structures are observed in the 

B4 phase, where the surface structures are achiral and yet the smectic layers are still chiral with 

specific twist of helical nanofilament growing epitaxial on top of the surface structures, the 

achiral B4 structure is observed in the bulk and has three-dimensional structure. 
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Figure 6.2.1: Chemical structure and phase sequence of the P-n-OPIMB homolog series. The 
phase sequence is reproduced from reference [3]. 

 

 

 

Figure 6.2.2: Helical nanofilaments of the B4 phase. (a), (b), (c) FFTEM images of P-8-OPIMB, 
P-12-OPIMB and P-16-OPIMB, respectively, showing the conventional helical nanofilaments of 
the B4 phase. All three materials are quenched at room temperature and fractured in the bulk.  

 



148 
 

 

 n=6 n=7 n=8 n=9 n=10 n=11 n=12 n=13 n=14 n=15 n=16

Length (Å) 38.0 38.0 40.4 40.7 43.4 43.7 46.3 46.7 49.3 49.6 52.3 

Table 6.2.1: Molecular length of P-n-OPIMB obtained by Chem3D, MM2 energy minimization. 
As the alkyl tails become longer, the molecular lengths become larger and the typical odd-even 
effect is observed.  

 

        Because the achiral B4 structure coexists with the helical nanofilaments in the bulk phase of 

P-12-OPIMB, we cannot distinguish them using the depolarized transmission light microscopy 

(DTLM). Therefore, FFTEM is mainly used here to reveal the achiral B4 structure at nm scale 

for detailed analysis. As shown in Figure 6.2.3a, the achiral microstructure shows a coffee-bean-

like texture while conventional helical nanofilaments show the flame-tip-like texture (Figures 

6.2.2a-c). With higher magnification (Figure 6.2.3b), we can see clearly that the achiral B4 

structure is made of smectic layers curved in saddle-splay shapes. Segments of saddle-splayed 

layers dominate the image and no macroscopic chiral structure can be observed. However, 

different from the disordered focal conics observed in the DC phase, these saddle-splay segments 

are locally arranged with hexagonal packing.  
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Figure 6.2.3: FFTEM images of the achiral B4 structure of P-12-OPIMB quenched at room 
temperature and fractured in the bulk. (a) The achiral B4 structure shows the coffee-bean-like 
texture. (b) Higher magnification of (a). The achiral B4 structure is dominated by saddle-slay 
curvature and segments of saddle-splay layers are locally arranged in a hexagonal lattice.  

 

        In order to unambiguously clarify the difference between the achiral B4 structure and that of 

the DC phase, as both phases are dominated by saddle-splay curvature, the free surface 

topography of the achiral B4 structure is shown in Figures 6.2.4a and b. At the air/liquid crystal 

interface, the achiral B4 structure is essentially the same as that observed in the bulk. On the 

other hand, the DC phase which shows disordered focal conics in the bulk forms quasi ordered 

toric focal conic domains at the air/liquid crystal interface (Chapter 4). This quasi ordered free 

surface structure is a common feature of the DC phase, having been observed in different 

materials forming the DC phase. Thus, the surface topography of the achiral B4 structure is 

totally different from that of the DC phase and we conclude that the achiral B4 structure is 

another kind of microstructure, different from the B4 helical nanofilaments and the DC 
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disordered focal conics. The consistent topography of the achiral B4 structure observed in the 

bulk and at the free surface indicates the continuous three-dimensional organization of those 

smectic layers. Different kinds of three-dimensional periodic minimal surfaces with saddle-splay 

curvature have been demonstrated by mathematicians and the three-dimensional arrangements of 

the Schwarz’s P surface and the Schoen’s GW surface are shown in Figures 6.2.5a and b, 

respectively. The Schwarz’s P surface has been used to calculate the elastic energy of the focal 

conic in the DC phase. Due to the locally hexagonal arrange of the saddle-splay segments, the 

Schoen’s GW surface may better describe the three-dimensional arrangement of the achiral B4 

structure.  

 

 

Figure 6.2.4: FFTEM images of the achiral B4 structure of P-12-OPIMB at the air/liquid crystal 
interface, quenched at T=120°C. (a) The free surface topography of the achiral B4 structure is 
similar to those observed in the bulk, indicating the three-dimensional organization of the 
smectic layers from the bulk to the surface. (b) Higher magnification of (a). 
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Figure 6.2.5: Examples of three-dimensional periodic minimal surfaces. (a) Three-dimensional 
periodic Schwarz’s P surface, which is used to calculate the elastic energy of focal conic in the 
DC phase. (b) Three-dimensional periodic Schoen’s GW surface, which can better explain the 
achiral B4 structure. 

 

      In order to further understand the nature of the achiral B4 structure, we will first compare the 

preferred radius of the saddle-splay curvature in the helical nanofilaments and that in the 

disordered focal conics. For helical nanofilaments, the preferred radius of the saddle-splay 

curvature is r=p/2π~30 nm (the pitch p can be measured from FFTEM images of helical 

nanofilaments). For the disordered focal conic structure of the dark conglomerate phase, the 

minimum elastic free energy corresponds to r~200 nm (measured from the distance between two 

toric focal conic at the air/liquid crystal interface). However, the preferred radius estimated from 

the achiral B4 structure is r~100 nm, which is in between the preferred radius of helical 

nanofilaments and that of disordered focal conics. The difference in preferred radius of the 

saddle-splay curvature may be an intrinsic reason for forming the achiral B4 structure. On the 
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other hand, in hundreds of FFTEM images studied, the achiral B4 structure is only observed in 

P-12-OPIMB and has never been observed in other P-n-OPIMB homologs. Compared with other 

P-n-OPIMB compounds in the phase diagram (Figure 6.2.1), P-12-OPIMB is the one where the 

B3 phase starts to disappear or appear. As we know, interesting things usually happen around 

regions where changes take place. So the unique phase sequence of P-12-OPIMB may also play 

an important role in the formation of the achiral B4 phase.   

        In a summary, in the B4 phase, the tendency for saddle-splay curvature coupled with the 

polarization usually leads to the formation of chiral helical nanofilaments with either clockwise 

or anticlockwise twist. However, in addition to the helical nanofilaments, we observe another 

microstructure in P-12-OPIMB with no helical twist, which we call achiral B4 structure. This 

achiral B4 structure is dominated by saddle-splay curvature and shows a coffee-bean-like texture. 

The achiral B4 structure is consistent in the bulk and at the free surface and appears to have 

three-dimensional order. Examples of three-dimensional periodic minimal surfaces have been 

shown to be the potential model of this phase. 
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6.3  W513: Enhanced formation of helical nanofilaments in the mixtures with 8CB 

        Until now most of the liquid crystal materials showing the B4 phase possess the classic 

double Schiff bases, which is hydrolytically unstable. W513 is a new bent-core mesogen 

synthesized by Dr. Ethan Tsai in Prof. David M. Walba’s group, possessing an unsymmetrically 

substituted bisphenol unit as a rigid central linker. The chemical structure and the phase 

sequence of W513 are shown in Figure 6.3.1. Detailed characterization of the B4 phase will be 

published elsewhere. Here we will focus on the difference between the microstructure of pure 

W513 and that of 8CB/W513 mixtures observed in the B4 phase.   

 

 

Figure 6.3.1: Chemical structure and phase sequence of pure W513. There is a B1 phase of very 
narrow temperature range, between the Iso and B4 phases. 

 

        Figures 6.3.2a-d show the DTLM images of the B1 and B4 phases of pure W513 during the 

B1-B4 phase transition. The B1 phase shows the conventional banana-leaf-like texture with dark 

brushes parallel to the polarizers (Figure 6.3.2a). Upon cooling, the B4 phase comes in as dark 

regions under crossed polarizers (Figures 6.3.2b and c), different from the texture of the 

conventional B4 phase such as that in NOBOW (Chapter 3) which shows a bluish color. When 
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the sample totally changes to the B4 phase, some bright, birefringent regions can still be 

observed (Figure 6.3.2d). We will show later that the birefringent regions correspond to the lock-

in of the B1 phase. Interestingly, when decrossing the polarizers, we cannot observe left- and 

right-handed chiral domains in the B4 phase.  

 

 

Figure 6.3.2: DTLM images of pure W513 during the B1-B4 phase transition around T=170°C. 
(a) DTLM image of the B1 phase of pure W513. (b) and (c) The B4 phase appears as dark 
regions under crossed polarizers. (d) DTLM image of the B4 phase of pure W513 with crossed 
polarizers. The birefringent regions are attributed to the lock-in of the B1 phase. The scale bar is 
100 µm in all images. 
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        In order to study the microstructure of the low temperature B4 phase, FFTEM and free 

surface TEM have been carried out. The results are shown in Figures 6.3.3a-d. Figure 6.3.3a 

shows the bulk structure of the B4 phase. Though individual helical nanofilaments cannot be 

distinguished in the image, the texture which is made of aggregates of helical nanofilaments 

resembles those observed in other materials. In the same sample, we also observed the two-

dimensional periodic structure (the smectic layers and the layer undulations, as shown in Figure 

6.3.3b), which indicates the coexistence of the B1 phase (two-dimensional periodic structure is 

characteristic of the B1 phase). The free surface TEM images show similar textures. The free 

surface topography of the B4 phase at the air/liquid crystal interface is shown in Figure 6.3.3c. 

Coexisting with the B4 phase, the microstructure of the B1 phase which lock-in at the low 

temperature B4 phase is also observed, as shown in Figure 6.3.3d. 
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Figure 6.3.3:  Microstructures of pure W513 in the bulk and at the air/liquid crystal interface. (a) 
FFTEM image of the B4 phase showing the topography of helical nanofilament aggregates. (b) 
FFTEM image of the B1 phase coexisting with the B4 phase at low temperature, showing two-
dimensional periodic structure, the smectic layers and the layer undulations. (a) and (b) are taken 
from the same sample, quenched at T=160°C and then fractured in the bulk. (c) TEM image of 
the B4 phase at the air/liquid crystal interface. (d) TEM image of the B1 phase at the air/liquid 
crystal interface. (c) and (d) are taken from the same sample, quenched at T=155°C. The free 
surface structure is imaged in (c) and (d).  
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        In order to further characterize the B4 phase of W513, three different concentrations of 

8CB/W513 mixtures (c=10%, 40%, and 76%, c is the weight percent of 8CB) were prepared. 

Due to the freezing point depression, which is similar to the 8CB/NOBOW systems, there is no 

B1 phase in the mixtures. W513 molecules first undergo a complete phase separation into the B4 

phase from the isotropic medium, while the 8CB is still isotropic. In all three mixtures, left and 

right-handed chiral domains are observed under decrossed polarizers, as shown in Figures 

6.3.4a-f. Interestingly, the left- and right-handed chiral domains shown in the c=40% 8CB/W513 

mixture present a unique boundary texture between different chiral domains. Under the optical 

microscope, we can directly observe how the boundary texture develops after different chiral 

domains meet. Currently, the appearance of the boundary texture is still a mystery.  

       Corresponding to the left and right-handed chiral domains, helical nanofilaments have been 

clearly observed in the mixtures. Figure 6.3.5a show the helical nanofilaments observed in a 

c=40% 8CB/W513 mixture. Individual helical nanofilament left on the replica appears as a dark, 

faint line in the image. An FFTEM image of a c=76% 8CB/W513 mixture is shown in Figure 

6.3.5b, which also clearly shows the helical nanofilaments of the B4 phase. The width of the 

helical nanofilaments of W513 is similar as that of NOBOW, w~35 nm. However, the helical 

pitch of W513 is p~150 nm, while the helical pitch of NOBOW is p~210 nm. As we know, the 

filament width and helical pitch are determined by the minimization of the total elastic energy of 

the filament, which strongly depends on the elastic constants. Therefore, the difference in helical 

pitch indicates different elastic constants of W513 and NOBOW.  
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Figure 6.3.4: DTLM images of 8CB/W513 mixtures. (a) and (b) DTLM images of a c=10% 
8CB/W513 mixture, showing left- and right-handed chiral domains with decrossed polarizers. (c) 
and (d) DTLM images of a c=40% 8CB/W513 mixture. (e) and (f) DTLM images of a c=76% 
8CB/W513 mixture. The scale bar is 100 µm in all images. 
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Figure 6.3.5: Distinct helical nanofilaments observed in mixtures of 8CB and W513. (a) FFTEM 
image of a c=40% 8CB/W513 mixture quenched at T=60°C when 8CB is still isotropic and 
fractured in the bulk. Helical nanofilaments can be observed in the mixture. The dark, faint lines 
are helical nanofilaments left on the replica. (b) FFTEM image of a c=76% 8CB/W513 mixture 
quenched at T=37°C when 8CB is in the nematic phase and fractured in the bulk. Individual 
helical nanofilaments can be identified. 

 

        Based on the above discussion, we notice that there are three main differences between pure 

samples and the mixtures: (1) There is coexistence of the B4 and B1 phases at low temperature 

in pure W513, while there is no B1 phase in the mixtures. (2) No optical rotation is observed in 

pure W513, while left- and right-handed chiral domains are distinguished in the mixtures. (3) 

Though the bulk texture of pure W513 resembles that of B4 helical nanofilament aggregates, 

distinct helical nanofilaments can only be observed in the mixtures. We believe that the high 

temperature B1 phase plays an important role here. It is possible that the B1 phase hinders the 

formation of helical nanofilaments when the B4 phase comes in and this is strongly supported by 

the lock-in of the B1 phase at low temperature. In this case, nucleation and growth of helical 



160 
 

nanofilaments in pure W513 may be confined in a small volume and no macroscopic chiral 

domains can be formed. To further test the idea, NMR has been carried out on pure W513 and 

8CB/W513 mixtures, for the molecular environment in the B4 phase of pure W513 should be 

different from that of 8CB/W513 mixtures if the formation of helical nanofilament is hindered by 

the high temperature B1 phase in pure W513.  

        Figure 6.3.6 shows the NMR spectra of pure W513 (red curve) and a c=10% 8CB/W513 

mixture (blue curve). By comparing the two NMR signals carefully, we notice three small 

differences between them: (1) In the mixture, the NMR peaks become sharper. (2) The positions 

of some NMR peaks have shifted a little bit in the mixture, for example, the two peaks around 27 

ppm. (3) The NMR peak of C=O group (around 66 ppm) splits into two peaks in the mixture. 

The broad line width in the solid-state 13C NMR of W513 is most likely due to a distribution of 

isotropic chemical shifts (as observed under Magic Angle Spinning), that is a distribution of 

local environments. When the B4 phase grows in from the isotropic in the mixture, it is much 

easier to get larger domains, which have fewer inherent inhomogeneities than the small saddles 

that grow in from the B1 phase in pure W513. Therefore, the carbons should be in more uniform 

shielding environments for each different carbon atom in the mixture and give a sharper peak. 

The small shifts of peak position also reflect the slightly different molecular environments in 

pure W513 and in the mixture. The single NMR peak of C=O group in the pure sample (around 

66 ppm) splits into two peaks in the mixture, indicating the chiral confirmation of the molecular 

arms in the mixture, which is typical in the NOBOW B4 phase [4]. Thus, we conclude that due 

to the high temperature B1 phase, the formation of the B4 phase is hindered in pure samples. In 

the mixture, the B1 phase disappears and the formation of helical nanofilaments is enhanced in 

the B4 phase.  
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        In a summary, we have shown a new bent-core material W513 without Schiff bases which 

forms the B4 phase. However, because of the high temperature B1 phase, the formation of the 

B4 phase is hindered to some extent. In the mixtures of W513 with 8CB, the formation of helical 

nanofilaments is enhanced. The overall behavior of W513 in 8CB mixtures is similar to that of 

NOBOW.  

 

 

Figure 6.3.6: NMR spectra of pure W513 and a c=10% 8CB/W513 mixture. The red curve shows 
the NMR of pure W513 and the blue curve shows the NMR of a c=10% 8CB/W513 mixture. 
Some small peaks evident in the mixture are probably from 8CB.  
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6.4  W624: The disordered B4 phase or the low temperature DC phase 

        W624 is one of the five-ring banana-shaped mesogens derived from isophthalaldehyde 

which are different from the P-n-OPIMB series. The chemical structure and the phase sequence 

of W624 are shown in Figure 6.4.1 [5]. W624 has a very similar phase sequence to P-12-

OPIMB, changing from Iso to B2 then to B4. However, the wide angle x-ray scattering indicates 

a crystal phase below the B4 phase in W624. The high temperature B2 phase of W624 shows a 

diffuse x-ray scattering peak at wide angle, indicating the short-range intralayer molecular 

ordering. In the low temperature B4 phase, multiple diffuse x-ray scattering peaks are observed 

at wide angle, indicates the intralayer hexagonal molecular packing, as observed in the B4 phase 

of the P-n-OPIMB series. On further cooling, a lot of sharp x-ray scattering peaks are observed at 

wide angle, which is characteristic of crystal structure [1]. This peculiar phase sequence has 

motivated us to characterize the microstructure of the B4 phase in detail.   

 

 

Figure 6.4.1: Chemical structure and phase sequence of W624 [5]. Interestingly, there is a crystal 
phase below the B4 phase, indicated by the x-ray scattering at wide angle. 
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        Upon cooling, the B2 phase appears from the isotropic with an optical texture shown in 

Figure 6.4.2a (the growth dynamics and the optical texture of the B2 phase is very similar to that 

of the conventional B1 phase. Since we focus on the low temperature B4 phase here, we won’t 

discuss whether the high temperature phase is the B1 or B2 phase here.). When further cooling 

down the sample, the texture totally changes, as shown in Figure 6.4.2b. Though no specific 

structure can be identified from the image, reminiscent of focal conic structure can be observed, 

which are totally different from that of P-n-OPIMB series. More interestingly, no left- or right-

handed chiral domains can be observed in this phase when decrossing the polarizers. Though x-

ray scattering indicates a crystal phase below the B4 phase, there is no observable change in the 

texture when the sample is cooled down to room temperature. This indicates that the 

microstructure of the B4 phase stays unchanged on further cooling and the appearance of 

multiple, sharp x-ray scattering peaks at wide angle may indicate a glass transition (glass 

transition of the B4 phase has been observed in the P-n-OPIMB series).  

 

   
Figure 6.4.2: DTLM images of pure W624 sandwiched in a 2.34 µm glass cell with untreated 
clean surface. (a) Optical texture of the high temperature B2 phase (T=145°C), showing banana-
leaf-like texture with the dark brushes parallel to the polarizers. (b) Optical texture of the low 
temperature B4 phase (T=135°C), which has a low birefringence. No left- or right-handed chiral 
domains can be observed when decrossing the polarizers. 
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        FFTEM images of the B4 phase of W624 are shown in Figures 6.4.3a-d. Figures 6.4.3a and 

b show the microstructure near the glass substrate, where most layers terminate normally at the 

substrate, as continuous layer edges can be distinguished in the images. Occasionally, the smooth 

saddle-splay surfaces can also be observed in the fracture plane. This kind of surface topography 

strongly resembles that observed in the dark conglomerate (DC) phase (Chapter 4). To further 

confirm this idea, Figures 6.4.3c and d show, to some extent, the three-dimensional bulk 

structure, with a very rough fracture plane. No helical nanofilaments are visible in those images. 

Instead, only curved smectic layers, similar to those nested in disordered focal conics, are 

observed. The overall picture emerged from these FFTEM images is of disordered focal conics 

like those observed in the DC phase. Therefore, we call this phase, the disordered B4 phase or 

the low temperature DC phase (for convenience, we will use the low temperature DC phase for 

this phase). 

        In order to further confirm the microstructure of the low temperature DC phase, the free 

surface structures at the air/liquid crystal interface are shown in Figures 6.4.4a-d. Consistent with 

the microstructure observed in the bulk, there are no helical nanofilaments and the surface 

topography is dominated by saddle-splay curvature, as shown in Figures 6.4.4a and b. Figures 

6.4.4c and d show the regions where most layers terminate at the interface and we can identify 

the long range continuity of those smectic layers through the layer edges. However, the low 

temperature DC phase is different from the high temperature DC phase which appears directly 

from isotropic, as the disordered focal conics anneal into quasi-ordered toric focal conic arrays in 

the high temperature DC phase at the air/liquid crystal interface (Chapter 4). It seems that the 

surface structure of the low temperature DC phase is also quenched in some disordered state.  
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Figure 6.4.3: FFTEM images of W624 quenched at T=135°C and fractured in the bulk. (a) and (b) 
show the topography of the B4 phase fractured near the glass substrate. The texture is similar to 
that observed in the dark conglomerate phase, as continuous layer edges and smooth saddle-splay 
surfaces can be identified in the images. (c) and (d) Bulk arrangement of the smectic layers. No 
helical structure is observed, but disordered, curved smectic layers. 
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Figure 6.4.4: Free surface TEM images of W624 quenched at T=135°C. (a) and (b) show regions 
where smectic layers tend to be parallel to the surface. Saddle-splay curvature is the 
characteristic feature of those smectic layers. (c) and (d) show regions where most smectic layers 
terminate normally at the interface. Continuous smectic layers can be identified through the layer 
edges. 
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        The conventional B4 phase is quite robust, forming individual helical nanofilaments in the 

mixtures same as those observed in pure samples. In order to further understand the property of 

the low temperature phase, mixtures of W624 with 8CB have been made. Figures 6.4.5a-d show 

the DTLM images of a c=23% 8CB/W624 mixture where c is the weight percent of 8CB in the 

mixture. When cooling from the isotropic, W624 first phase separates from the solution, forming 

the B2 phase, as shown in Figure 6.4.5a. Due to the freezing point depression, the Iso-B2 

transition temperature has decreased. However, different from the conventional B4 materials (the 

P-n-OPIMB series), where the B2 phase disappears in the mixture when the Iso-B2 transition 

temperature decreases below the B2-B4 transition temperature of pure sample, the B2 phase of 

W624 still exist when the Iso-B2 transition temperature decreases below the B2-B4 transition 

temperature of pure sample. The temperature range of the B2 phase in the mixture is quite 

narrow, where the B2 phase comes in around T=110°C and then changes to the low temperature 

phase, as shown in Figure 6.4.5b. Left- and right-handed optical rotation can be observed in the 

low temperature DC phase when decrossing the polarizers, as shown in Figures 6.4.5c and d. The 

fine texture of the chiral domains is different from that usually observed in the B4 phase of the P-

n-OPIMB series. However, the reason why the low temperature DC phase in pure samples has a 

different texture and doesn’t show any optical rotation is still unknown. 
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Figure 6.4.5: DTLM images of a c=23% 8CB/W624 mixture in a 4 µm thick cell with planar 
unidirectional alignment layers taken around T=110°C. (a) The B2 phase comes in from the 
isotropic on cooling, and shows the banana-leaf-like optical texture. (b) The low temperature DC 
phase comes in on further cooling, appearing as dark regions under crossed polarizers. (c) and (d) 
left- and right-handed chiral domains of the low temperature DC phase observed in the mixture, 
with decrossed polarizers. The B2 phase which has only a very short temperature range comes in 
around T=110°C and then changes to the B4 phase.  

 

        Beside the c=23% 8CB/W624 mixture, a c=50% 8CB/W624 mixture is also prepared. 

Figures 6.4.6a-f show the optical textures of the c=50% 8CB/W624 mixture heated from room 

temperature to isotropic, and then cooled down. Before heating, at T=30°C, 8CB is in the 
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nematic phase. Two different regions can be observed, where regions of the W624 low 

temperature DC phase appear as black lines and regions of 8CB aligned along the alignment 

layers show uniform birefringence (Figure 6.4.6a and magnified in Figure 6.4.6b). Upon heating, 

8CB changes to isotropic, while W624 changes to a beautiful texture, shown in Figure 6.4.6c. 

When the mixture is heated to the isotropic and cooled down again, depending on the 

thermodynamics, different behaviors have been observed. Sometimes the low temperature DC 

phase appears below the B2 phase, and sometimes the low temperature DC phase appears 

directly below the isotropic. In the latter case, the DC phase shows a typical fractal growth 

pattern, as shown in Figure 6.4.6d. These fractal patterns also show left- and right-handed optical 

rotation as shown in Figures 6.4.6e and f. Overall, the phase behavior of the low temperature DC 

phase is different from that of the conventional B4 phase. However, as the 8CB concentration 

increases, the low temperature DC phase behaves more like the B4 phase in the mixture, 

evidenced by the formation of fractal patterns.  

        In a summary, we have shown that the disordered B4 structure or the low temperature DC 

phase of W624. The low temperature DC phase is quenched in some disordered state, compared 

with the high temperature DC phase. The phase behavior of W624 in mixtures with 8CB is 

different from the materials forming the conventional B4 phase. However, as the 8CB 

concentration increases, the low temperature DC phase behaves more like the B4 phase in the 

mixture, evidenced by the formation of fractal patterns. 
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Figure 6.4.6: DTLM images of a c=50% 8CB/W624 mixture in a 4 µm thick cell with planar 
unidirectional alignment layers. (a) Before heating, at T=30°C, 8CB is in the nematic phase. 
Regions where 8CB is aligned along the alignment layers show very high birefringence. The low 
temperature DC phase of W624 shows the fractal-like texture (dark lines). (b) Higher 
magnification of (a). (c) When heating to T=80°C, 8CB changes to isotropic, while W624 
changes to a beautiful texture. (d) Upon cooling from the isotropic, the low temperature DC 
phase of W624 nucleates and grows at different sites, and forms the fractal texture. (e) and (f) 
Left- and right-handed optical rotations of the fractal texture can be observed with decrossed 
polarizers. (d)-(f) are taken at T=90°C. The contrast in (d), (e) and (f) was enhanced using 
Canvas. 
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Chapter 7 

Randomized Grain Boundary Phase 

 

7.1  Introduction 

        Hockey-stick-like molecules, which are usually formed from a central core to which arms of 

a substantially different length are joined, are an interesting class of liquid crystal materials. 

Because of the unique molecular shape, hockey-stick-like molecules are on the border between 

classical rod-like molecules and conventional banana-shaped materials, where interesting phases 

and phenomena may emerge. Recently, the mesophases of several hockey-stick-like materials 

have been studied [1, 2, 3]. All these hockey-sticks like molecules show very similar phase 

sequences, e.g. N-SmCS-SmCA or SmA-SmCS-SmCA. The SmCS-SmCA phase transition seems 

to be a characteristic feature of the hockey-stick-like materials. A molecular conformation 

change has been observed across the SmCS-SmCA phase transition, where molecules change 

from more rod-like ones in the SmCS phase to being more bent in the SmCA phase, which leads 

to a different packing of the molecules within the layers [4]. In the study of COBOXD, a hockey-

stick-like molecule synthesized by Dr. Haitao Wang, an interesting chiral phase has been 

observed. We will discuss this phase in detail below.  
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7.2  COBOXD: Randomized grain boundary phase 

        The chemical structure and the phase sequence of COBOXD are shown in Figure 7.2.1a. 

Similar to other hockey-stick-like molecules, COBOXD shows a SmA-SmX phase transition. 

Upon cooling, the SmA phase appears from isotropic, showing a typical focal conic texture, with 

the dark brushes parallel to the polarizers (Figure 7.2.1b). On cooling to the SmX phase, the 

birefringent texture disappears and it becomes dark under crossed polarizers. Interestingly, left- 

and right-handed chiral domains can be distinguished when decrossing the polarizers, as shown 

in Figures 7.2.1c and d. Below the SmX phase, there is a crystal phase, which shows colorful 

birefringence as it grows in, as shown in Figure 7.2.1d, bottom right. So far, only two phases 

showing macroscopic chiral domains under decrossed polarizers has been observed, the dark 

conglomerate phase which appears directly from the isotropic and the B4 phase which is the 

lowest liquid crystal phase and is still stable at room temperature. Both of these two liquid 

crystal phases are made of bent-core molecules and are dominated by the saddle-splay curvature 

driven by the intra-layer mismatch of the bent-core smectic layers. The chiral phase of 

COBOXD has a unique phase sequence, appearing below the SmA phase and followed by a 

crystal phase. We will show that the SmX phase is a new chiral structure different from any 

phases observed so far.  
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Figure 7.2.1: Chemical structure and phase sequence of COBOXD and the DTLM images of 
each liquid crystal phase. (a) Chemical structure and phase sequence of COBOXD. (b) Focal 
conic texture of the SmA phase observed below the isotropic at T=110°C. (c) and (d) Optical 
texture of the SmX phase below the SmA phase at T=100°C, showing left- and right-handed 
chiral domains. The scale is 100 µm in all images. The samples are sandwiched between clean, 
untreated glass planchettes. 

 

 

        In order to study the microstructure of the SmX phase, FFTEM and free surface TEM have 

been used. Figures 7.2.2a-d show the topography of the SmX phase at the air/liquid crystal 

interface. Before discussing the microstructure of the chiral phase, we will first illustrate an 

interesting aspect of human visual perception. Figures 7.2.2a and b are the same image rotated by 
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180°. However, Figures 7.2.2a and b give us a different impression about the surface topography 

that smectic blocks below the surface shown in Figure 7.2.2a appear to be above the surface in 

Figure 7.2.2b. Figures 7.2.2c and d give more examples of the surface structure of the SmX 

phase. The SmX phase is made of smectic blocks where locally the smectic layers are flat. 

Globally, the surface is rough, with the smectic blocks oriented in different directions. Instead of 

being dominated by saddle-splay curvature such as the B4 and DC phases, the chiral phase of 

COBOXD is made of flat smectic layers. However, those smectic layers self-assemble into small 

blocks oriented in different directions. Thus, we call this phase, a randomized grain boundary 

(TGB) phase. 

        When considering blocks of smectic layers, we are reminded of the famous twist grain 

boundary phase (the TGB phase), which is made of twisting blocks of smectic layers [5]. For 

comparison, Figures 7.2.3a-d shows the surface topography of the TGBA phase of the chiral rod-

like molecule W371 with increasing magnification (the TGBA phase is one kind of the TGB 

phase, where the twisting smectic blocks are made of SmA layers). Though FFTEM images have 

revealed a twisted arrangement of the smectic blocks in the bulk, at the free surface, the smectic 

blocks are randomly oriented. In most cases, because of the rotational and translational 

symmetries imposed by the air/liquid crystal interface, more ordered structure is usually 

observed at the free surface than in the bulk (Chapter 4). The inverse case observed in the TGBA 

phase may be attributed to the competition between twist and the homeotropic alignment 

imposed by the air interface.  

 

 



176 
 

 

 

Figure 7.2.2: Free surface TEM images of the SmX phase at the air/liquid crystal interface, 
quenched at T=100°C. (a) Free surface TEM image of the SmX phase which shows the surface 
topography of the chiral phase, representing a rough surface of smectic blocks. (b) Image of (a) 
rotated by 180°. (c) Another example of the surface structure. At the air/liquid crystal interface, 
the free surface of the SmX phase is not flat and blocks of smectic layers are oriented at different 
directions. (d) Higher magnification of (c). 
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Figure 7.2.3: Free surface TEM images of the TGBA phase of W371 at the air/liquid crystal 
interface, quenched at T=55°C. (a) (b) (c) and (d) Free surface TEM images of the TGBA phase, 
showing the surface topography at the same region with increasing magnification. The TGBA 
phase is made of blocks of smectic layers. Though the smectic blocks are arranged in a twisting 
confirmation in the bulk, the smectic blocks at the free surface seem to randomly orient.  
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        As discussed above, disordered smectic blocks of the TGBA phase have been observed at 

the air/liquid crystal interface phase. But the smectic blocks are much larger than those observed 

in the SmX phase and the surface topographies of those two phases are different. In order to 

further clarify the difference, the bulk structure of the SmX phase investigated by fracturing the 

sample is shown in Figures 7.2.4a-d. Consistent with the surface microstructure, the bulk 

topography also shows small blocks of randomly oriented smectic layers. In addition, some 

curved smectic layers are seen in the bulk. We believe that the curved layers connect different 

smectic blocks in the bulk. In Figures 7.2.4a and b, the curved layers are randomly distributed in 

the fracture plane. In Figures 7.2.4c and d, we see places where the curved smectic layers tend to 

make loops at the ends. The three-dimensional details of how the smectic blocks join with the 

curved smectic layers are still under investigation. 

        To distinguish the SmX phase from the low temperature crystal phase unambiguously, free 

surface TEM images of the crystal phase are shown in Figures 7.2.5a and b. Figure 7.2.5a shows 

the global surface topography of the crystal phase. At higher magnification, as shown in Figure 

7.2.5b, the crystal phase is seen to be an ordered layer structure with long range correlation 

length. In order to further understand the molecular packing in the smectic layers of the SmX 

phase, we have carried out x-ray scattering on the powder samples.  

 

 

 

 



179 
 

 

 

Figure 7.2.4: FFTEM images of the SmX phase quenched at T=100°C and fractured in the bulk. 
(a) Bulk structure of the SmX phase. Besides the randomly oriented smectic blocks, some curved 
smectic layers are revealed by fracturing the sample. (b) Higher magnification of (a). (c) Similar 
texture as (a). The curved smectic layers tend to make circles at the ends. (d) Higher 
magnification of (c). 
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Figure 7.2.5: Free surface TEM images of the crystal phase of COBOXD below the SmX phase 
at the air/liquid crystal interface, quenched at T=90°C. (a) The overall surface texture of the 
crystal phase. (b) Higher magnification of (a). The low temperature crystal phase shows long 
range ordered structure. 

 

      The molecular configuration obtained from Chem3D (MM2, energy minimization) is shown 

in Figure 7.2.6a. The molecular length is l~30.2 Å. X-ray scattering shows a resolution limited 

peak of the SmA phase at q~0.1642 Å-1, corresponding to d~38.0 Å, as shown in Figure 7.2.6b. 

The layer spacing of the SmA phase is therefore bigger than the molecular length, which 

suggests a bilayer structure of the SmA phase [6]. In the SmX phase, only a diffuse x-ray 

scattering peak is observed, as shown in Figure 7.2.6c. The peak position at q~0.2565 Å-1 

corresponds to d~24.5 Å. Because of the finite FWHM~0.0014 Å-1, the correlation length of the 

smectic layers in the SmX phase is ξ~1428 Å, corresponding to about 58 smectic layers. This 

implies that each smectic block is made of about 58 smectic layers, which is consistent with the 

observation of the smectic blocks in the FFTEM or free surface TEM image. The layer spacing 



181 
 

of the SmX phase is much smaller than that in the SmA phase. If we assume the bilayer 

configuration of the molecules doesn’t change in the SmX phase and the layer spacing shrinkage 

results from the molecular tilt, the molecular tilt is about θ~50°  in the SmX phase, which is 

extremely large. However, this could be the intrinsic reason of forming the randomized grain 

boundary phase. As the phase changes from the SmA phase to the SmX phase, the layer spacing 

has deceased so much that the long range ordered smectic layers collapse into small smectic 

blocks oriented at different directions. The random orientation of the smectic blocks causes the 

birefringence to average out and the phase appears dark when observed under crossed polarizers. 

According to Neumann’s principle, the symmetry of any physical property of a medium must 

include the symmetry elements of the point group of the medium. Therefore, the macroscopic 

chiral domains observed in the SmX phase indicate the chiral arrangement of the molecules. As 

there is no evidence of the molecules arranged in helical configuration, the macroscopic chirality 

may also come from the layer chirality, where the bilayer configuration shows the bent-shape 

and is tilted in the chiral phase,  

        In a summary, we have investigated the mesophases of a new hockey-stick-like molecule. 

Different from any previously known chiral phases, the chiral SmX phase is made of smectic 

blocks at different orientations, which we call the randomized grain boundary phase. The 

molecules are arranged in a bilayer structure in the SmA phase. At the transition to the SmX 

phase, there is a very large layer shrinkage, which may induce the collapsing of the smectic 

layers and form the randomly oriented smectic blocks.  
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Figure 7.2.6: X-ray scattering in the SmA and SmX phases. (a) The molecular conformation and 
length of COBOXD obtained from Chem3D (MM2, energy minimization). (b) The x-ray 
scattering peak of the SmA phase, which is resolution limited. (c) The x-ray scattering peak of 
the SmX phase, which is very diffuse (the green curve is the background, the blue curve is a 
fitting to the peak after background subtraction and the red curve is the sum of the green and blue 
curves). 
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Chapter 8 

Gallery of microstructure shown by FFTEM images 

 

8.1  Introduction 

        In the previous chapters, we have discussed the microstructures of the B4 phase, the DC 

phase, the B7 phase and other new, unidentified phases. In this chapter, we will show all the 

other microstructures which have been observed so far. We will focus on presenting those 

microstructures, with little detail. The related references are strongly suggested for detailed 

discussions of these systems. Therefore, this chapter will serve as a gallery of all the other 

microstructures.  
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8.2  SEM images of the dark conglomerate phase 

        In Chapter 4, we have shown disordered focal conics in the bulk and quasi-ordered toric 

focal conics at the air/liquid crystal interface of the dark conglomerate (DC) phase. Here we 

present disordered focal conics of the DC phase in the bulk, using SEM. As shown in Figures 

8.2.1a-d, the bulk structure of the DC phase is made of disordered focal conics and the 

disordered focal conics vary in size. A characteristic feature of the topology is curved layers.  

 

 

Figure 8.2.1: Bulk structure of the dark conglomerate phase of a c=50% W508 and No7 [1] 
mixture. (a), (b), (c) and (d) SEM images of the DC phase fractured in the bulk. The sample is 
quenched in the DC phase and then fractured in the bulk. After coating the surface with gold, the 
sample is visualized in SEM. Characteristic curved smectic layers are observed in all these 
images.  



186 
 

8.3  Two-dimensional nematic-smectic A phase transition of CT2 

        CT2 is a T-shaped molecule synthesized by Prof. Carsten Tschierske. The T-shaped 

molecules undergo very interesting self-assembly, as shown in Figure 8.3.1a [2]. Cooling from 

isotropic, the T-shaped molecules first form a 2D-Iso phase with layered structure and in-plane 

random order. On further cooling, the 2D-Iso phase transitions to a 2D-Nem phase of in-plane 

orientational order. In this phase, only one dimensional order is observed with typical layer steps 

appearing in the fracture plane as shown in Figure 8.3.1b. The layer surfaces are smooth and no 

finer structure can be observed (the in-plane orientational ordering cannot be distinguished in the 

FFTEM image) as magnified in Figure 8.3.1c. Below the 2D-Nem phase, the in-plane 

orientational order changes to smectic layering, where additional in-plane periodic structure 

appears, as shown in Figure 8.3.1d. This system provides a good example of a two-dimensional 

nematic-smectic A phase transition. With careful examination of the in-plane order, we notice 

that the periodicity of the 2D-Sm phase is not as ordered as those observed in the columnar phase 

(Figures 8.4.1a and b). When constructing the surface topography in three dimensions using 

Matlab software, as shown in Figure 8.3.1e, we can clearly identify the annihilation of the in-

plane layers, mediated by dislocation lines [3].    
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Figure 8.3.1: Two-dimensional nematic-smectic A phase transition of CT2. (a) Models of the 
2D-Iso, 2D-Nem and 2D-Sm. (b) FFTEM image of the 2D-Nem phase, quenched at T=150°C 
and then fractured in the bulk. (c) Magnified region of (b). (d) FFTEM image of the 2D-Sm 
phase phase, showing in-plane periodic structure. (e) Construction of the three-dimensional 
structure of the fracture plane in (d).  
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8.4  Two-dimensional order of the columnar phases of the phasmidic indigoid liquid 

crystals 

        The molecular arrangement in the columnar phase of polycatenar mesogens has been well 

studied [4]. The two phasmidic indigoid liquid crystal materials, synthesized by Dr. Jan H. 

Porada, show very interesting optical textures [5], where the green sample (sample 1 in the 

reference) shows a B2 like texture and the blue sample (sample 2 in the reference) shows a B7 

like texture. Multiple x-ray scattering peaks have been detected at small angle, indicating the 

two-dimensional order of these phases. In addition, FFTEM images of the green (Figure 8.4.1a) 

and blue (Figure 8.4.1b) samples, unambiguously show two-dimensional order of those phases, 

which are marked as layer step and layer undulation in the images. Therefore, despite of the 

unusual optical textures, these two phases are confirmed to be columnar phases. The reason why 

the columnar phases of these two liquid crystal materials show the B2 like and B7 like textures 

respectively is still unknown. The layer undulation of the columnar phases is quite ordered, 

which is different from that observed in two-dimensional smectic A phase of CT2 (Figure 

8.3.1d) and indicates a long range correlation length within the two-dimensional lattices, 

consistent with sharp x-ray reflection peaks.    
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Figure 8.4.1: FFTEM images of the columnar phases of the phasmidic indigoid liquid crystal 
materials. (a) FFTEM image of the green sample (sample 1 in the reference), quenched at 
T=135°C and then fractured in the bulk. (b) FFTEM image of the blue sample (sample 2 in the 
reference), quenched at T=180°C and then fractured in the bulk. Two dimensional ordering is 
observed in these two phases.  
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8.5  Smectic layering of the De Vries phase of W530 

        Among smectic A phases, there is one class called the De Vries phase, where molecules are 

uniformly distributed in a tilt cone (the cone model). The layer spacing changes continuously 

when the smectic A phase transitions to the smectic C phase. Here, we show FFTEM images of 

the De Vries material W530 [6]. For the De Vries phase, only a typical layer structure can be 

observed, as shown in Figures 8.5.1. The layer structure is basically the same as those observed 

in the conventional smectic A phase, with no other feature.    

 

 

Figure 8.5.1 FFTEM images of the De Vries phase of W530. (a) FFTEM image of the De Vries 
phase, quenched at T=50°C and then fractured in the bulk. (b) Higher magnification of (a). 
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8.6  The SmAPF and SmAPFmod phases of W596 

        Recently, a SmAPF phase of W586 has been discovered and characterized [7]. W596 is a 

derivative of W586 and was mainly characterized by Dr. Chenhui Zhu [8]. In the study of W596, 

a high temperature SmAPFmod phase is observed and is followed by a low temperature SmAPF 

phase. In the SmAPFmod phase, the polarization is splayed within each polarization modulation 

stripe, which forms the periodic layer undulations similar as those observed in the B7 phase, as 

shown in Figure 8.6.1a. While in the low temperature smectic APF phase, the layer surfaces are 

very flat, similar to those observed in a conventional smectic A phase, as shown in Figure 8.6.1b.   

 

 

Figure 8.6.1: FFTEM images of the SmAPFmod and SmAPF phases of W596. (a) FFTEM image 
of the SmAPFmod phase, quenched at T=150°C and then fractured in the bulk. Two-dimensional 
ordering is observed in the SmAPFmod phase. (b) FFTEM image of the SmAPF phase, quenched 
at T=120°C and then fractured near the glass substrate.  
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8.7  The SmAPF and SmX phases of W623 

        W623 is another derivative of W586, with the reversal of one carbonyl group in W623, 

which increases the polarization value of the molecules and shows continuous polarization 

reorientation in an electric field [9]. At high temperature, W623 shows the SmAPF phase, with 

characteristic smectic layers of flat surface, as shown in Figures 8.7.1a and b. Different from 

W596, W623 shows a low temperature SmX phase with two-dimensional periodicity, as shown 

in Figures 8.7.2a-d. Layer step and layer undulation can be clearly identified in Figure 8.7.2a, 

similar to those observed in the columnar phase (Figures 8.4.1a and b). However, the structure 

observed in the SmX phase is different from that of the columnar phase and shows fiber-like 

features, as shown in Figure 8.7.2b, where they are dramatically deformed due to fracturing. A 

single fiber can also be observed as shown in Figure 8.7.2c. In order to further understand this 

phase, mixtures of W623 with 8CB have been prepared. Similar two-dimensional structure is 

observed in the c=75% W623/8CB mixture, as shown in Figure 8.7.2d. 

 

Figure 8.7.1: FFTEM images of the SmAPF phase of W623. (a) FFTEM of the SmAPF phase, 
quenched at T=160°C and then fractured in the bulk. (b) FFTEM image of the SmAPF phase, 
quenched at T=140°C and then fractured in the bulk. Typical smectic layers of flat surface are 
observed in the SmAPF phase. 
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Figure 8.7.2: FFTEM images of the SmX phase of W623. (a) FFTEM image of the SmX phase, 
quenched at T=100°C and then fractured in the bulk. Two-dimensional periodicity is observed. 
(b) FFTEM image of the SmX phase, quenched at T=100°C and then fractured near the glass 
substrate, showing dramatically deformed fibers. (c) FFTEM image of the SmX phase quenched 
at T=100°C and then fractured near the glass substrate, showing individual fiber. (d) FFTEM 
image of the SmX phase in a c=75% W623/8CB mixture, quenched at T=110°C and then 
fractured in the bulk, showing collective organization of the fibers. 
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8.8  The cholesteric phase mixed with gold nanorods  

        Mixtures of cholesteric liquid crystals with gold nanorods have been prepared by Dennis F. 

Gardner to investigate the self-assembly and self-alignment of colloidal nanoparticle within the 

liquid crystals [10]. A typical example of gold nanorods are shown in Figure 8.8.1a (The gold 

nanorods prepared in solution are placed on a thin formvar, and the gold nanorods are directly 

imaged by TEM when the solution dries out). The gold nanorods are closely packed when the 

solution dries out. In the cholesteric phase mixed with the gold nanorods, periodicity of the 

cholesteric phase can be observed, as shown in Figure 8.8.1b. Unfortunately, since the liquid 

crystal molecules could not be distinguished and the gold nanorods were not identifiable, the 

bulk topology of the assembly is difficult to interpret. 

 

 

Figure 8.8.1: FFTEM images of the cholesteric phase mixed with the gold nanorods. (a) TEM 
image of the gold nanorods. (b) FFTEM image of the cholesteric phase mixed with 1% gold 
nanorods, quenched at T=35°C and then fractured in the bulk. 
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8.9  Mixtures of 8CB with gold nanoparticles 

        Mixtures of 8CB with gold nanoparticles have been made by Dr. R. Pratibha and the effect 

of the surrounding anisotropic liquid crystal medium on surface plasmon resonance exhibited by 

concentrated suspensions of gold nanoparticles has been studied [11]. The gold nanoparticles 

used in this mixture are shown in Figure 8.9.1a. When mixing 8CB with gold nanoparticles, the 

gold nanoparticles uniformly disperse in the mixture, as shown in Figure 8.9.1b. However, the 

8CB smectic layers cannot be observed in the image, which is a mystery and is attributed to layer 

deformations induced by the nanoparticles [11]. 

 

 

Figure 8.9.1: FFTEM images of 8CB mixed with gold nanoparticles. (a) TEM image of the gold 
nanoparticles. (b) FFTEM image of 8CB mixed with gold nanoparticles (the volume fraction of 
the gold nanoparticles in the mixture is 0.54), quenched at room temperature and then fractured 
in the bulk. 
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8.10  Gold nanorod with DMPC  

        Similar to mixtures of gold nanoparticles with calamitic liquid crystals, mixtures of gold 

nanoparticles with lyotropic liquid crystals show very promising properties [12]. Figure 8.10.1a 

shows an interesting fractal pattern of the gold nanorod which forms when the gold nanorods 

solution dries out. The ripple texture of DMPC in water [13] can be observed in Figure 8.10.1b. 

Because the gold nanorods are merged in the solution, they are difficult to identify in the image. 

Only a periodic ripple texture is obvious in this case. 

 

 

Figure 8.10.1: FFTEM images of the DMPC mixed with gold nanorods in water. (a) TEM image 
of gold nanorods. (b) FFTEM image of the DMPC mixed with gold nanorods in water, quenched 
at T=35°C and then fractured in the bulk, showing a ripple texture. 
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8.11  The crystal morphology of the complementary 12bp DNA 

        The appearance of liquid crystal phases of short complementary DNA due to end to end 

stacking has attracted a lot of interest, which may account for the origin of life [14]. In the work 

with Dr. Giuliano Zanchetta, we have observed some interesting phenomena in the 12 base pair 

(bp) self-complementary DNA system, which are not yet well understood. Solution of DNA is 

place on a clean glass substrate. Figures 8.11.1a and b show the free surface topography of the 

complementary 12bp DNA crystallizing at the glass substrate (When the DNA dries out, the 

surface is coated with platinum and then the replica is observed under TEM). It seems that the 

DNA self-assembles into nanofibers during crystallization. However, because we can’t resolve 

individual molecules, the detailed molecular arrangement in those crystal fibers is still unknown.  

 

 

Figure 8.11.1 Free surface TEM images of self-complementary 12bp DNA dried on a glass 
substrate. (a) The crystal morphology of the complementary 12bp DNA dried on the clean glass 
substrate composed of bundles of nanofibers. (b) Higher magnification of (a).  

  



198 
 

8.12  Helical filaments observed in self-complementary 12bp DNA solution 

        When studying the liquid crystal phase, we observed helical filaments in the self-

complementary 12bp DNA solution, as shown in Figures 8.12.1a-d. The width of the helical 

filaments is much larger than 3 nm (the width of a single duplex). Therefore, the helical filaments 

are an assembly of DNA duplexes. Still, the detailed molecular arrangement is unknown. 

 

 

Figure 8.12.1: Helical filaments observed in the complementary 12bp DNA solution. (a), (b), (c) 
and (d) Series of FFTEM images with increasing magnification showing the helical filaments 
observed in the solution of the complementary 12bp DNA. The sample is quenched at room 
temperature. 
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8.13  FFTEM images of the cholesteric phase made from self-complementary 12bp DNA 

        The DNA solution is a typical lyotropic system, which shows isotropic, cholesteric and 

columnar phases, as the concentration of DNA increases. Because the DNA molecules are very 

small (width of a single DNA duplex ~3 nm) and the resolution of FFTEM is ~3 nm, individual 

molecule is hard to be distinguished in the FFTEM images. However, as shown in Figures 

8.13.1a and b, the periodicity of the cholesteric phase can be observed, which identifies the 

liquid crystal phase.  

 

 

Figure 8.13.1: FFTEM images of the cholesteric phase of the complementary 12bp DNA 
solution. (a) FFTEM image of the cholesteric phase, showing the periodic topography. (b) 
Higher magnification of (a). 
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8.14  Liquid crystal phases of graphene oxide plates in water 

        Graphene is a material of broad interest. However, due to the difficulty of fabricating 

graphene in large amounts, graphene oxide plates have become another option [15]. Formation 

of the liquid crystal phase in a water solution of graphene oxide plates has attracted intense 

interest [16]. Figure 8.14.1a shows graphene oxide plates under TEM and Figure 8.14.1b shows 

the topography of the liquid crystal phase formed by graphene oxide plates in water, where 

graphene oxide plates tend to be parallel to each other. The beautiful story of 

“flexopolydispersity of nematic liquid crystals” will be presented by Yue Shi [17].  

 

 

Figure 8.14.1: FFTEM images of graphene oxide plates in water. (a) TEM image of dry graphene 
oxide plates on a thin formvar. (b) FFTEM image of graphene oxide plates in water, quenched at 
room temperature and then fractured in the bulk, showing the arrangement of graphene oxide 
plates in the liquid crystal phase. 
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8.15  FFTEM images of the cybotactic nematic phase 

        The biaxial nematic phase has attracted a lot of attention recently [18]. Due to the 

observation of four diffuse peaks in 2D x-ray scattering at small angle from aligned samples, 

clusters of smectic C layers have been proposed in the biaxial nematic phase, which is also called 

the cybotactic nematic phase. In order to study those smectic C clusters in the cybotactic nematic 

phase, several materials provided by Prof. Tony Jakli have been investigated. Here are two 

examples. F493 shows very weak layering near the glass substrate, which may be the surface 

induced layer structure, as shown in Figure 8.15.1a. At the air/liquid crystal surface, no layer 

structure has been observed (Figure 8.15.1b). The bumps may associate with the local surface 

tension of the nematic phase. A131 is another example, which shows distinct layer structure, 

deep in the bulk, as shown in Figure 8.15.1c. This is supported by the surface structure, as shown 

in Figure 8.15.1d. However, these results are inconsistent with the XRD prediction that the 

smectic C cluster is about 30 nm in scale.  
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Figure 8.15.1: FFTEM images of the cybotactic nematic phases. (a) FFTEM image of F493, 
quenched at T=70°C and then fractured in the bulk. The weak layering may be the surface 
induced layer structure. (b) Free surface TEM image of F493, quenched at T=70°C. No layer can 
be observed, except large bumps. (c) FFTEM image of A131, quenched at T=70°C and then 
fractured in the bulk. Smectic layers are clearly observed, deep in the bulk. (d) Free surface TEM 
image of A131, quenched at T=130°C. Only weak layering is observed at the air/liquid crystal 
interface. 
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