Date of Award

Spring 1-1-2014

Document Type


Degree Name

Doctor of Philosophy (PhD)


Chemistry & Biochemistry

First Advisor

Bruce E. Eaton

Second Advisor

Jim Goodrich

Third Advisor

Rob Knight

Fourth Advisor

Arthi Jayaraman

Fifth Advisor

Joe Falke


In the first part of this thesis, methods for functionalizing spherical gold nanoparticles with nucleic acid binding ligands (aptamers) that target the VEGF receptor complex were developed. In order to provide a multiplexed labeling strategy for imaging the VEGF receptor complex in electron microscopy, gold nanoparticles of distinct sizes were conjugated to modified ssDNA aptamers that target the VEGF-A cytokine, the VEGFR-2 RTK receptor and a membrane associated co-receptor, Nrp-1. The modified ssDNA gold nanoparticle conjugates were applied to a human lung carcinoma cell line (A549) which has been shown to express each of these proteins and used as a model system for VEGF signaling. Binding constants for the modified aptamers were also determined using a fluorescence polarization anisotropy assay to determine KD and KOFF for the aptamers with their respective proteins. In the latter part of this thesis, a modied ssDNA SELEX protocol was also developed in order to evolve imidazole modied ssDNA sequences that assemble gold nanoparticles from Au3+ precursor ions in aqueous solution. Active sequences bound to nanoparticles were partitioned from inactive sequences based on density via ultracentrifugation through a discontinuous sucrose gradient. Colloidal gold solutions produced by the evolved pool had a distinct absorbance spectra and produced nanoparticles with a narrower distribution of sizes compared to colloidal gold solutions produced by the starting randomized pool of imidazole modified ssDNA. Sequencing data from the evolved pool shows that conserved 5 and 6 nt motifs were shared amongst many of the isolates, which indicates that these motifs could serve as chelation sites for gold atoms or help stabilize colloidal gold solutions in a base specific manner.