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Figure 3.5 Effects of presynaptic A2A receptor blockade on reinstatement induced by 
prefrontal cortex stimulation. A) Intra-mPFC AMPA induces cocaine seeking that is 
blocked by SCH 442416. B) Intra-mPFC cocaine also induces cocaine seeking. Again, 
pretreatment with SCH 442416 attenuates cocaine seeking. C) Microinjection sites of 
animals included in the data set. *** p< 0.001 Indicates significant from vehicle-vehicle 
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prior to intra-mPFC cocaine significantly decreased cocaine seeking compared to intra-

mPFC cocaine alone (t41=4.66, p<0.001). Lever presses on the inactive lever were not 

significantly different. 

 

Presynaptic Adenosine A2A Receptor Antagonism has no Effect on Cocaine Seeking 

Induced by Nucleus Accumbens Stimulation 

Administration of AMPA or cocaine into the nucleus accumbens shell induces 

cocaine seeking, presumably by activating postsynaptic glutamate and dopamine 

receptors, respectively. We hypothesized that blockade of presynaptic adenosine A2A 

receptors would not affect reinstatement mediated by direct stimulation of postsynaptic 

glutamate or dopamine receptors. In these experiments animals averaged 39.4 ± 4.1 

cocaine infusions over the last 5 days of self-administration. As before, intra-NAc AMPA 

increased active lever presses, but pretreatment with the presynaptic adenosine A2A 

receptors antagonist did not decrease reinstatement (figure 3.6a). A significant 

treatment X lever interaction (F2,42= 20.15, p<0.0001) and significant main effects of 

treatment (F2,42=17.27, p<0.0001) and lever (F1,42=88.36, p<0.0001) were observed. 

Post hoc testing revealed that both intra-NAc AMPA alone (t42=8.25, p<0.001) and 

pretreatment with SCH 442416 prior to intra-NAc AMPA infusion (t42=6.17, p<0.001) 

significantly increased cocaine seeking compared to vehicle. No effects of treatment 

were found on inactive lever responding. 

Similarly, intra-NAc cocaine infusion increased responding on the active lever, 

but pretreatment with SCH 442416 failed to reduce reinstatement (figure 3.6b). Analysis  
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Figure 3.6 Effects of presynaptic A2A receptor blockade on reinstatement induced by 
intra-NAc stimulation. A) Intra-NAc AMPA produces cocaine seeking, and pretreatment 
with SCH 442416 has no effect. B) Intra-NAc cocaine also induces reinstatement that is 
not altered by pretreatment with SCH 442416 C) Microinjection sites of animals included 
in the data set. *** p< 0.001 Indicates significant from vehicle-vehicle 
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revealed a significant treatment X lever interaction (F2,39=11.80, p<0.0001) and 

significant main effects of treatment (F2,39=17.57, p<0.0001) and lever (F1,39=52.65, 

p<0.0001). Bonferroni’s posttests showed that both SCH 442416 followed by intra-NAc 

cocaine infusion (t39=5.71, p<0.001) and intra-NAc cocaine infusion alone (t39=7.11, 

p<0.001) significantly increased reinstatement responding compared with vehicle. No 

effect of treatment on inactive lever responding was observed. 

 

Discussion 

The results of the studies presented here show that blockade of postsynaptic or 

presynaptic adenosine A2A receptors produces opposing effects on cocaine seeking. 

We observed a dose dependent increase in cocaine seeking to KW 6002 alone, which 

has previously been described as an exclusively postsynaptic adenosine A2A receptor 

antagonist (Orru et al, 2011a). We also found that pretreatment with KW 6002 enhanced 

cocaine-primed reinstatement. Similarly, cocaine seeking induced by AMPA or cocaine 

infusion into the mPFC or by AMPA infusion into the NAc was augmented by 

pretreatment with KW 6002.  

These results are supported by previous literature showing that adenosine A2A 

receptors exert tonic inhibition over dopamine D2 receptors (Farrar et al, 2010; 

Hakansson et al, 2006; Harper et al, 2006), and confirms previous work indicating that 

blockade of adenosine A2A receptors in the NAcc can facilitate cocaine seeking (O'Neill 

et al, 2012). As previously mentioned, adenosine A2A receptors have their densest 

expression in the striatum and are highly co-localized with dopamine D2 receptors on 
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striatopallidal MSNs (Fink et al, 1992; Svenningsson et al, 1999b) where they have 

opposing intracellular cascades. Stimulation of dopamine D2 receptors in the NAc is 

necessary for cocaine-primed reinstatement (Anderson et al, 2006; Bachtell et al, 2005; 

Schmidt et al, 2006a), and decreasing inhibition from adenosine A2A receptors amplifies 

signaling through these receptors (Filip et al, 2006; Hakansson et al, 2006; Harper et al, 

2006). For example, blockade of adenosine A2A receptors with KW 6002 prevents the 

effort-related behavioral deficits induced by a dopamine D2 receptor antagonist (Nunes 

et al, 2010) and mimics the cellular signaling effects of a quinpirole, a dopamine D2 

receptor agonist (Hakansson et al, 2006).  

Reinstatement responding was robustly enhanced by postsynaptic adenosine A2A 

receptor blockade in nearly all studies measuring cocaine seeking with the notable 

exception of cocaine seeking induced by cocaine delivery into the NAc. This suggests 

that inhibition of postsynaptic adenosine A2A receptors, presumably located on the 

indirect pathway MSNs, increases cocaine seeking regardless of whether dopamine or 

glutamate initiates reinstatement. Although the enhancement of reinstatement with 

pretreatment of KW 6002 was not seen with cocaine infusion into the NAc, we suspect 

there may have been a ceiling effect given that cocaine in the NAc with or without KW 

6002 pretreatment produced robust cocaine seeking. 

 Interestingly, presynaptic adenosine A2A receptor blockade had no effect on 

cocaine seeking alone, but blunted systemic cocaine-primed reinstatement. Additionally, 

infusion of either AMPA or cocaine into the mPFC induced reinstatement that was 

eliminated by presynaptic adenosine A2A receptor blockade. However, intra-NAc AMPA 
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and cocaine induced cocaine seeking was unaffected by pretreatment with SCH 

442416, the presynaptic adenosine A2A receptor antagonist. This suggests that 

inhibition of presynaptic adenosine A2A receptors located on glutamate terminals inhibits 

cocaine seeking presumably through a negative regulation of glutamate signaling from 

the mPFC. 

Human studies have indicated that cocaine craving is associated with increased 

activity of the PFC (Kilts et al, 2001; Volkow et al, 1999a). Similarly, animal cocaine self-

administration studies have suggested that glutamate signaling from the mPFC to the 

nucleus accumbens is necessary for cocaine-primed reinstatement (McFarland et al, 

2003; Park et al, 2002; Rebec and Sun, 2005). Dopamine receptor stimulation, via 

intracranial infusion of cocaine, in the mPFC increases cortical glutamate release to the 

NAc and also plays a necessary role in cocaine-primed reinstatement (Park et al, 2002). 

Thus in our experiments, cocaine seeking induced by a mPFC infusion of cocaine, and 

likely AMPA, is dependent on glutamate release in the NAc. Previous studies have 

shown that antagonism of presynaptic adenosine A2A receptors is able to decrease 

glutamate release into the striatum (Orru et al, 2011a) and if this is the case in the NAc, 

SCH 442416 is likely preventing glutamate release driven by mPFC stimulation. This 

explanation is further supported by the fact that reinstatement driven by intra-NAcc 

infusion of AMPA or cocaine, which is not dependent on mPFC glutamate release, was 

not decreased (affected) by blockade of presynaptic adenosine A2A receptors with SCH 

442416.  
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 It is possible that our effects are due to blockade of adenosine A2A receptors 

expressed outside of the striatum since administration of KW 6002 and SCH 442416 

was systemic. However, this seems unlikely given the fact that adenosine A2A receptors 

are mainly expressed in the striatum, and that previous work from our lab has shown 

intra-NAc antagonism of postsynaptic adenosine A2A receptors produces increases in 

cocaine seeking (O'Neill et al, 2012). Additionally, systemic administration of SCH 

442416 but not KW6002 decreases glutamate release in the striatum in response to 

electrical stimulation of cortex (Orru et al, 2011a). Furthermore, genetic deletion studies 

support the idea that conditional knockout of forebrain adenosine A2A receptors, which 

would include presynaptic adenosine A2A receptors, decrease sensitivity to 

psychostimulants (Bastia et al, 2005; Shen et al, 2008), while a conditional knockout of 

striatal adenosine A2A receptors enhances sensitivity to psychostimulants (Shen et al, 

2008). 

Although it is not clear why SCH 442416 binds only presynaptic A2A receptors, in 

vitro binding assays show that SCH 442416 has a decreased affinity for adenosine A2A 

receptors when cells are co-transfected with dopamine D2 receptors. Thus, it appears 

that the presence of dopamine D2 receptors inhibits it’s ability to block adenosine A2A 

receptors, possibly due to the formation of A2A-D2 heteromeric receptor complexes (Orru 

et al, 2011a). This is not the case for the postsynaptic adenosine A2A receptor 

antagonist, KW 6002 (Orru et al, 2011a). Because dopamine D2 receptors and 

adenosine A2A receptors are highly colocalized on MSNs of the indirect pathway within 

the striatum (Fink et al, 1992; Svenningsson et al, 1999b), SCH 442416 is unlikely to 
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have any direct effect on signaling within these neurons. Despite the unidentified 

mechanism for the binding of SCH 442416 to presynaptic adenosine A2A receptors and 

KW 6002 to postsynaptic adenosine A2A receptors, the opposing effects on cocaine 

seeking confirm that these antagonists are targeting different populations of adenosine 

A2A receptors. 

Together these findings support previous studies that revealed differential effects 

of pre- and postsynaptic adenosine A2A receptor antagonism (O'Neill et al, 2014; Orru et 

al, 2011b). This work also validates previous findings indicating that adenosine 

receptors modulate cocaine related behaviors (Bachtell et al, 2009; Ferre et al, 2007; 

Hobson et al, 2012; Hobson et al, 2013; O'Neill et al, 2012) and may be a viable target 

for future pharmacotherapies. These findings are novel because they reveal the effects 

of adenosine A2A receptor blockade on reinstatement mediated by mPFC activation in 

comparison with cocaine seeking induced in the NAc itself. Future studies should 

examine the cellular mechanisms that underlie the bi-directional effects of presynaptic 

compared to postsynaptic adenosine A2A receptor blockade. 
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Chapter 4: Persistent reduction of cocaine seeking by pharmacological 

manipulation of adenosine A1 and A2A receptors during extinction training in rats 

 

Abstract 

Adenosine receptor stimulation and blockade have been shown to modulate a 

variety of cocaine-related behaviors. These studies identify the direct effects of 

adenosine receptor stimulation on cocaine seeking during extinction training and the 

persistent effects on subsequent reinstatement to cocaine seeking. Rats self-

administered cocaine on a fixed ratio one schedule in daily sessions over 3 weeks. 

Following a 1-week withdrawal, the direct effects of adenosine receptor modulation were 

tested by administering the adenosine A1 receptor agonist, N6-cyclopentyladenosine 

(CPA, 0.03 and 0.1 mg/kg), the adenosine A2A agonist, CGS 21680 (0.03 and 0.1 

mg/kg), the presynaptic adenosine A2A receptor antagonist, SCH 442416 (0.3, 1, and 3 

mg/kg), or vehicle prior to each of six daily extinction sessions. The persistent effects of 

adenosine receptor modulation during extinction training were subsequently tested on 

reinstatement to cocaine seeking induced by cues, cocaine, and the dopamine D2 

receptor agonist, quinpirole. All doses of CPA and CGS 21680 impaired initial extinction 

responding; however, only CPA treatment during extinction produced persistent 

impairment in subsequent cocaine- and quinpirole-induced seeking. Dissociating CPA 

treatment from extinction did not alter extinction responding or subsequent 

reinstatement. Administration of SCH 442416 had no direct effects on extinction 

responding but produced dose-dependent persistent impairment of cocaine- and 
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quinpirole-induced seeking. These findings demonstrate that adenosine A1 or A2A 

receptor stimulation directly impair extinction responding. Interestingly, adenosine A1 

receptor stimulation or presynaptic adenosine A2A receptor blockade during extinction 

produces lasting changes in relapse susceptibility. 
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Introduction 

Chronic cocaine use alters the signaling of numerous neurotransmitters throughout 

the brain, and these changes are thought to underlie the compulsive drug seeking that 

characterizes addiction (Koob and Volkow, 2010). Addicts are susceptible to relapse 

even after prolonged abstinence from cocaine, suggesting that drug-induced changes 

persist and contribute to drug relapse (Nestler, 2001). Relapse is modeled in rodents 

using the drug self-administration/reinstatement paradigm where rats are initially trained 

to perform an operant response to acquire a drug reinforcer. Rats then undergo 

extinction training resulting in newly learned contextual relationships, culminating in 

progressive decreases in responding in the previously drug-associated context (Bouton, 

2004). Following extinction training, reinstatement can be induced by a priming injection 

of the previously self-administered drug, stress, or the reintroduction of a drug-

associated cue (Shalev et al, 2002). This model has been used to identify 

pharmacotherapies that directly reduce reinstatement of drug seeking (Schmidt et al, 

2010; Shalev et al, 2002; Uys and LaLumiere, 2008). However, recent studies have 

begun examining the effects of pharmacotherapies administered during abstinence or 

extinction training with the goal of finding treatments that produce enduring reductions in 

relapse susceptibility (Reichel et al, 2011; Zhou and Kalivas, 2008).  

Adenosine is a ubiquitous neuromodulator that influences a variety of 

neurotransmitters through its activity at two adenosine receptor subtypes expressed in 

the brain.  Adenosine A1 and adenosine A2A receptors are G protein-coupled receptors 

that produce inhibitory and stimulatory cellular effects, respectively (Svenningsson et al, 
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1999b). Recent work from our lab and others has demonstrated that both adenosine A1 

receptors and adenosine A2A receptors are capable of modulating numerous cocaine-

related behaviors. For example, stimulation of both adenosine A1 receptors and 

adenosine A2A
 receptors either systemically or in the nucleus accumbens blocks the 

expression of cocaine sensitization (Filip et al, 2006; Hobson et al, 2012). Blockade of 

adenosine A2A receptors, on the other hand, enhances both expression and 

development of cocaine sensitization (Filip et al, 2006; Hobson et al, 2012). Similarly, 

stimulation of either adenosine A1 receptors or adenosine A2A receptors blocks the 

expression of cocaine conditioned place preference (Poleszak et al, 2002a). In a self-

administration paradigm adenosine A2A receptor stimulation attenuates acquisition of 

cocaine self-administration (Knapp et al, 2001), while antagonism enhances responding 

for cocaine on a progressive ratio schedule of reinforcement (Doyle et al, 2012). Finally, 

stimulation of both adenosine A1 receptors and adenosine A2A receptors suppresses 

cocaine reinstatement, while blockade of adenosine A2A receptors enhances cocaine 

seeking (Bachtell et al, 2009; Hobson et al, 2013; O'Neill et al, 2012). 

In this study, we expand upon the role of adenosine receptors in cocaine seeking by 

stimulating adenosine receptor subtypes during extinction training. We assess the direct 

effect of adenosine A1 receptor or adenosine A2A receptor stimulation on cocaine 

seeking during extinction and the persistent effects on subsequent reinstatement 

induced by cocaine-associated cues and drug priming. We hypothesize that targeting 

adenosine receptors during the extinction phase of the self-administration/reinstatement 
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model will enhance the effects of extinction and produce lasting inhibitory effects on 

relapse susceptibility. 

 

Materials and Methods 

Animals and housing conditions 

Male Sprague–Dawley rats (Charles River, Wilmington, MA) initially weighing 250–

300 g were individually housed with food and water available ad libitum. All experiments 

were conducted during the light period of a 12 hr light/dark cycle in accordance with the 

guidelines established by the Institutional Animal Care and Use Committee at the 

University of Colorado at Boulder. 

 

Drugs 

The adenosine A2A receptor agonist, CGS 21680, was purchased from Tocris 

Bioscience (Ellisville, MO). The adenosine A1 receptor agonist, CPA (N6-

cyclopentyladenosine), presynaptic adenosine A2A receptor antagonist, SCH 442416(2-

(2-Furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]p

yrimidin-5-amine), dopamine D2 receptor agonist, quinpirole ((−)-quinpirole 

hydrochloride), and cocaine hydrochloride were obtained from Sigma-Aldrich (St Louis, 

MO). All drugs, except SCH 442416, were dissolved in sterile-filtered physiological 

(0.9%) saline. The presynaptic A2AR antagonist, SCH 442416, was dissolved in 33% 

DMSO and 66% ddH20. 
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Cocaine Self-Administration Procedure 

 Self-administration procedures were performed in operant conditioning chambers 

(Med-Associates, St Albans, VT) equipped with two response levers and an infusion 

pump system. Animals were initially trained to lever press for sucrose pellets to facilitate 

acquisition of cocaine self-administration (O'Neill et al, 2012). After lever-press training, 

animals were fed ad libitum for at least 24 hr before catheter implantation surgery, and 

for the duration of the study. Surgery and cocaine self-administration procedures were 

similar to those described in O’Neill et al, 2012. Rats were implanted with jugular 

catheters under halothane anesthesia (1–2.5%). Rats were allowed 3–7 days recovery 

in their home cage before experimental procedures began. During this time, catheters 

were flushed daily with 0.1 ml heparinized saline.  Animals showing signs of post-

surgical distress were administered (S)-(+)-ketoprofen (5 mg/kg, s.c.), a non-steroidal 

anti-inflammatory analgesic (Carabaza et al, 1996). After recovery, animals were 

allowed to self-administer intravenous cocaine (0.5 mg/kg/100 μl injection) on an FR1 

reinforcement schedule in daily 4 h sessions for 5–7 days per week. Cocaine injections 

were delivered over 5 s concurrent with the illumination of a cue light above the active 

lever and were followed by a 15 s time-out period (TO 20 s) when the house light 

remained off and responding produced no consequence. Inactive lever responses 

produced no consequence throughout testing. After a minimum of 15 cocaine self-

administration sessions, animals remained in their home cages for 6 days of forced 

abstinence. 
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Effects of adenosine receptor stimulation and blockade on extinction responding 

On days 7–12 following self-administration, animals returned to the operant 

conditioning chambers for 6 daily 4 h extinction training. Responses on the lever 

previously paired with cocaine injections during self-administration (active lever) and on 

the inactive lever were recorded, but had no programmed drug or cue delivery.  The 

effect of adenosine receptor stimulation on responding on both levers was tested in 

animals counterbalanced for cocaine intake. Five minutes prior to the initiation of the 

extinction sessions, animals were treated with vehicle, the adenosine A1 receptor 

agonist, (CPA: 0.03 mg/kg or 0.1 mg/kg, ip), the adenosine A2A receptor agonist, (CGS 

21680: 0.03 mg/kg or 0.1 mg/kg, ip), or the presynaptic adenosine A2A receptor 

antagonist (SCH 442416: 0.3 mg/kg, 1 mg/kg or 3 mg/kg, ip). Doses of the adenosine 

agonists/antagonist were chosen based on previous findings illustrating their effects on 

lever responding in the absence of locomotor suppression or generalized effects on 

operant behavior (Bachtell et al, 2009; Hobson et al, 2012; Orru et al, 2011a).   

 

Effects of temporally dissociating adenosine A1 receptor stimulation from extinction 

training 

In order to determine whether the effects of adenosine A1 receptor stimulation during 

extinction on subsequent reinstatement are due to an enhancement of extinction 

learning we decided to temporally dissociate the adenosine A1 receptor receptor 

stimulation from extinction training. This way we can assess the necessity of extinction 

training in the effectiveness of the adenosine A1 receptor agonist in decreasing 
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subsequent reinstatement. All cocaine self-administration and extinction procedures 

were the same except that animals were treated with vehicle or CPA (0.1 mg/kg, ip) 4 h 

after the end of each 4 h extinction session with the first treatment administered 4 h 

after the first extinction session. We chose to administer the adenosine A1 receptor 

agonist 4 h post extinction based on the pharmacokinetics of CPA (Mathot et al, 1993) 

and other experiments examining similar effects (Hammond et al, 2012; Mickley et al, 

2012).  

 

Reinstatement procedures 

The enduring effects of the adenosine agonist/antagonist treatments administered 

during extinction training were also tested on reinstatement responding over the 

subsequent 4 days following extinction training using a repeated testing paradigm. 

Thus, all animals were tested for cue-, cocaine-, and dopamine D2 agonist-induced 

reinstatement. All reinstatement tests consisted of a 4 h reinstatement session 

comprised of a 2 h of extinction phase followed by a 2 h reinstatement test phase. Cue-

induced reinstatement was initiated by 5 non-contingent saline infusions paired with the 

illumination of the cocaine cue light (5 s) administered every 2 min over the first 10 min 

of the reinstatement phase.  Throughout the reinstatement phase, responding at the 

previously active lever resulted in a 5 s cue light illumination and saline infusion. 

Responding at the inactive lever resulted in no cue or infusion. Cocaine-induced 

reinstatement was initiated by a systemic injection of cocaine (15 mg/kg, i.p.) 5 min prior 

to the reinstatement phase. Dopamine D2 agonist-induced reinstatement was initiated 
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by a systemic injection of quinpirole (0.3 mg/kg, s.c.) 5 min prior to the reinstatement 

phase. Quinpirole was used to induce reinstatement because previous studies have 

shown that dopamine D2 receptors play a key role in mediating cocaine-related 

behaviors (Bachtell et al, 2005; De Vries et al, 2002; Fontana et al, 1993; Graham et al, 

2007; Khroyan et al, 2000; Merritt and Bachtell, 2013; Self et al, 1996). Thus, dopamine 

D2 receptor stimulation produces behavioral cross-sensitization in animals receiving 

repeated cocaine and produces robust reinstatement responding in animals 

extinguished from cocaine self-administration. Responding at both levers was recorded, 

but resulted in no cues or reward delivery. 

 

Data Analyses 

The numbers of animals in each experimental group ranged from 6 to 22. Extinction 

data for animals receiving systemic injections of either adenosine A1 receptor agonist or 

adenosine A2A receptor agonist 5 min prior to extinction training were analyzed by a 

two-way mixed-design ANOVA with lever and treatments (vehicle, adenosine A1 

receptor agonist or adenosine A2A receptor agonist) as the factors.  Extinction data for 

animals receiving systemic injections of the presynaptic adenosine A2A receptor 

antagonist 5 min prior to extinction training was analyzed by a separate two-way mixed-

design ANOVA with lever and treatments (vehicle or adenosine A2A receptor antagonist) 

as the factors. Lever responding during reinstatement testing was analyzed by a two-

way ANOVA with session (extinction or reinstatement) and extinction treatments serving 

as the factors. Responding on the active and inactive levers (see Supplemental Results) 
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during reinstatement was analyzed separately by a two-way ANOVA. Significant 

interactions were followed with simple main effects analyses (one-way ANOVA) and 

post hoc tests (Bonferroni's comparisons). Statistical significance was set at p < 0.05 for 

all tests. 

 

Results 

Adenosine A1 and A2A receptor stimulation decreases initial extinction responding 

Prior to extinction training, animals were assigned to treatment groups based on their 

cocaine intake over the last five self-administration sessions (Fig. 1a). Figure 1b 

illustrates that pretreatment with either CPA or CGS 21680 significantly decreased 

extinction responding on the first of six daily 4-h extinction training sessions. We 

observed a significant treatment X day interaction (F 20,280 = 1.70, p < 0.05) and 

significant main effects of treatment (F 4,280 = 2.91, p < 0.05) and day (F 5,280 = 38.94, 

p < 0.0001). Subsequent analysis of the interaction revealed that pretreatment with CPA 

(0.3 and 0.1 mg/kg) and CGS 21680 (0.03 and 0.1 mg/kg) significantly reduced active 

lever responding compared to vehicle during the first extinction training session. Post 

hoc analysis revealed a significant reduction in lever responding of all treatment groups 

compared to vehicle (0.03 mg/kg CPA: t 280 = 4.14, p < 0.001; 0.1 mg/kg CPA: t 

280 = 4.38, p < 0.001; 0.03 mg/kg CGS 21680: t 280 = 2.92, p < 0.05; 0.1 mg/kg CGS 

21680: t 280 = 4.05, p < 0.001). Analysis of the first and second hour of active lever 

responding in the first extinction training session revealed a significant treatment X hour 

interaction (F2,43 = 6.37; p = 0.0038) and significant main effects of treatment (F2,43 =  
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Figure 4.1 Stimulating adenosine A1 or adenosine A2A receptors decreases extinction 
responding during the first extinction session. a) Average number of cocaine infusions 
and active lever responses for each treatment group in each 4-h session over the last 6 
days of the self-administration phase. b) Systemic administration of the adenosine A1 
receptor agonist, CPA or the A2A receptor agonist, CGS 21860, reduced extinction 
responding on the first day of extinction training. Asterisk indicates significant from 
vehicle pretreatment (t test, p < 0.05)  
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Figure 4.2 Temporal effects of stimulating adenosine A1 or adenosine A2A receptors 
during extinction training a) Systemic administration of the adenosine A1 receptor 
agonist, CPA (0.03 and 0.1 mg/kg, i.p.) or the adenosine A2A receptor agonist, CGS 
21680 (0.03 and 0.1 mg/kg, i.p.), immediately prior to extinction significantly decreases 
active lever responses during the first 15 min of the first extinction session (left). Simple 
main effects analysis of the significant interaction found that a pretreatment with CPA 
0.03 mg/kg (t392 = 5.03, p < 0.001), 0.1 mg/kg (t392 = 6.26, p<0.001), and CGS 21680 
0.03 mg/kg (t392 = 4.74, p < 0.001), 0.1 mg/kg (t392 = 4.98, p<0.001) decreased active 
lever responding in the first 15 min of the first extinction session compared with vehicle 
control. During the 1st h of the first extinction session animals pretreated with either 0.03 
mg/kg (t56 = 3.15, p < 0.05), 0.1 mg/kg (t56 = 3.58, p < 0.01) CGS 21680 or 0.03 mg/kg 
(t56 = 3.45, p<0.01) 0.1 mg/kg (t56 = 4.71; p < 0.001) CPA showed significantly reduced 
active lever pressing compared to a vehicle pretreatment (right). * Indicates all groups 
significant from vehicle pretreatment (t-test, p < 0.05) b) Administration of the adenosine 
A1 or adenosine A2A receptor agonist also has time-dependent effects throughout 
extinction training. Administration of 0.03 mg/kg and 0.1 mg/kg of the adenosine A1 
receptor agonist, CGS 21680 or 0.1 mg/kg of the adenosine A1 receptor agonist CPA 
decreased extinction responding in the first hour of the 3rd extinction session (^ 
Significant from vehicle, t-test, p < 0.05). On the 4th day of extinction training 0.1 mg/kg 
CGS 21680 and 0.1 mg/kg CPA significantly decreased active lever responses in the 
first hour of the extinction session (# Significant from vehicle pretreatment, t-test, p < 
0.05).  
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Table 4.1 Statistical analyses of adenosine agonist effects during the first 2 hours of 
extinction sessions 1-6 

Extinction 
Session 

Statistical Analysis 

1 Hour: F1,56 = 48.53, p < 0.0001 
Treatment: F4,56 = 3.76, p < 0.01 
Interaction: F4,56 = 5.07, p <  0.01 

2 Hour: F1,56 = 19.77, p < 0.0001 
Treatment: NS 
Interaction: NS 

3 Hour: F1,56 = 25.77, p = 0.0001 
Treatment: F4,56 = 4.05, p < 0.01 
Interaction: F4,56 = 4.49, p < 0.01 

4 Hour: F1,56 = 4.66, p < 0.05 
Treatment: NS 
Interaction: F4,56 = 2.61, p < 0.05 

5 Hour: F1,56 = 45.64, p < 0.0001 
Treatment: NS 
Interaction: NS 

6 Hour: F1,56 = 40.96, p< 0.0001 
Treatment: NS 
Interaction: NS 
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4.48; p < 0.0171) and hour (F1,43 = 52.59; p < 0.0001). We also analyzed responding 

during extinction training sessions 2 through 6 in hourly intervals over the first 2 h of 

each extinction session (figure 4.2b) Statistical analyses are presented in Table 4.1. 

 

Adenosine A1 and A2A receptor stimulation decreases initial extinction responding at 

the previously inactive lever 

Analyses of inactive lever responding during extinction training revealed significant 

main effects of day (2 h: F5, 215 = 12.45; p < 0.0001 & 4 h: F5, 215 = 14.09; p < 0.0001) 

and treatment in 2 h sessions (F2, 215 = 3.76; p = 0.03), but not in 4 h sessions (F2, 215 =  

1.58, p = 0.22). No significant interactive effects were observed (2 h: F10, 215 = 1.34; p = 

0.21 & 4 h: F10, 215 = 1.14, p = 0.33). 

Further analysis of inactive lever responding in 15 m intervals of the first extinction 

session found a significant main effect of time (F7, 301 = 6.19; p < 0.0001), but not 

significant main effects of treatment (F2, 301 = 1.83; p = 0.17). No significant interactive 

effects were observed (F14, 301 = 1.27; p = 0.22). The hourly comparison of inactive lever 

responding revealed a significant main effect of hour in extinction sessions 1 (F1,43 = 

26.01; p < 0.0001), 2 (F1, 43 = 10.43; p < 0.01), 3 (F1, 43 = 5.06; p < 0.05), 5 (F1, 43 = 

22.80; p < 0.0001), and 6 (F1, 43 = 19.16; p < 0.0001), but not in extinction session 4 (F1, 

43 = 3.21; p = 0.08). Significant main effects of treatment during the first 2 h of extinction 

session were observed in extinction sessions 2 (F2, 43 = 4.09; p < 0.05) and 4 (F2, 43 = 

4.24; p < 0.05), but not in extinction sessions 1 (F2, 43 = 1.88; p = 0.17), 3 (F2, 43 = 0.94; p 

= 0.40), 5 (F2, 43 = 0.07; p = 0.93), or 6 (F2, 43 = 1.37; p = 0.27). No significant interactive 
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effects were observed in any of the extinction sessions (Session 1: F2, 43 = 2.20; p = 

0.12; Session 2: F2, 43 = 1.18; p = 0.32; Session 3: F2, 43 = 1.78; p = 0.18; Session 4: F2, 

43 = 0.47; p = 0.63; Session 5: F2, 43 = 0.11; p = 0.89; Session 6: F2, 43 = 1.72; p = 0.19). 

 

Adenosine A1 receptor stimulation during extinction training blunts subsequent cocaine- 

and quinpirole-induced reinstatement 

We next assessed the persistent effects of adenosine receptor stimulation during 

extinction training on subsequent reinstatement testing. Figure 4.3 illustrates that the 

highest dose of CPA (0.1 mg/kg), but not the lower dose of CPA (0.03 mg/kg) or either 

dose of CGS 21680 administered during extinction training inhibited subsequent 

reinstatement induced by cocaine and quinpirole.  None of the treatments had any effect 

on cue-induced reinstatement.  Analysis of active lever responding during cue-induced 

reinstatement revealed a significant main effect of reinstatement for all animals (CPA 

experiment: F1,39 = 72.56, p< 0.0001; CGS experiment: F1,36 = 69.59, p< 0.0001). No 

treatment or treatment X reinstatement interaction effects were observed indicating that 

regardless of treatment during extinction, all animals reinstated similarly. Analysis of 

cocaine-induced reinstatement in animals treated with CPA during extinction training 

revealed a significant treatment X reinstatement interaction (F2,39 = 3.63, p< 0.05) and 

significant main effects of treatment (F1,39 = 3.62, p< 0.05) and reinstatement (F1,39 = 

36.17, p< 0.0001). Subsequent analysis of the interaction revealed that rats treated with 

0.1 mg/kg CPA during extinction showed reduced cocaine-induced reinstatement when 

compared to vehicle treated rats (t39 = 3.76, p< 0.001). Analysis of cocaine-induced  
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Figure 4.3 Persistent effects of stimulating adenosine A1 receptors during extinction 
training on subsequent cocaine- and D2-agonist-induced cocaine seeking. a) 
Pretreatment with the adenosine A1 receptor agonist, CPA, or the adenosine A2A 
receptor agonist, CGS 21680, during extinction training had no effect on subsequent 
cue-induced reinstatement. Subsequent reinstatement induced by b) cocaine and c) 
quinpirole was significantly blunted by administration of the adenosine A1 receptor 
agonist, CPA (0.1 mg/kg), but not by the adenosine A2A receptor agonist, CGS 21680, 
administered during extinction training. Asterisks indicate significant from vehicle 
pretreatment during extinction training (Bonferroni’s post test, p < 0.001)  
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reinstatement in animals treated with CGS 21680 during extinction revealed a significant 

main effect of reinstatement (F1,36 = 42.78, p< 0.0001), but no main effect of treatment 

or treatment X reinstatement interaction. Analysis of quinpirole-induced reinstatement in 

animals treated with CPA during extinction training revealed a significant treatment X 

reinstatement interaction (F2,37 = 3.56, p< 0.05) and significant main effects of treatment 

(F1, 37 = 3.81, p< 0.05) and reinstatement (F1, 37 = 18.84, p < 0.0001). Subsequent 

analysis of the interaction found that animals treated with 0.1 mg/kg CPA during 

extinction showed less D2 agonist-induced reinstatement responding compared to 

vehicle animals (t37 = 3.80, p< 0.001). Analysis of quinpirole-induced reinstatement in 

animals treated with CGS during extinction showed a significant main effect of 

reinstatement (F1,34 = 15.56, p< 0.001), but no main effect of treatment or treatment X 

reinstatement interaction. 

 

Adenosine A1 receptor stimulation temporally dissociated from extinction training has no 

effect on extinction responding or subsequent reinstatement responding 

Given the persistent effects of CPA to diminish subsequent reinstatement, we 

next assessed whether adenosine A1 receptor stimulation temporally dissociated from 

the extinction training sessions would recapitulate these effects. Animals were 

separated into balanced treatment groups based on cocaine intake prior to extinction 

training (figure 4.4). Four hours after the end of each extinction training session, animals 

were administered either vehicle or 0.1 mg/kg CPA, the dose effective in reducing 

subsequent reinstatement (see above). Analysis of extinction responding at the active  
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Figure 4.4 Dissociating adenosine A1 receptor stimulation from extinction training has 
no effect on extinction responding or subsequent reinstatement. a) Average number of 
cocaine infusions and active lever responses in each 4-h session over the last 5 days of 
the self-administration phase. b) Systemic treatment with the adenosine A1 receptor 
agonist, CPA (0.1 mg/kg, i.p.), 4 h after each extinction session has no effect on 
extinction responding. Adenosine A1 receptor stimulation temporally dissociated from 
extinction training has no effect on c) cue-, d) cocaine-, or e) dopamine D2-agonist-
induced reinstatement.  
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lever revealed a significant main effect of session (F 5,60 = 24.49, p < 0.0001), but there 

was no effect of treatment or the session X treatment interaction. Following extinction 

training, animals were tested for cue-, cocaine-, and quinpirole-induced drug seeking 

(figure 4.4). In all reinstatement tests, there was a significant main effect of 

reinstatement (cue: F 1,12 = 14.25, p < 0.01; cocaine: F 1,12 = 11.46, p < 0.01; quinpirole: 

F 1,12 = 14.27, p < 0.01), but there was no significant treatment or treatment X 

reinstatement interaction suggesting that dissociating adenosine A1 receptor 

stimulation from the extinction training sessions is not sufficient to produce 

these persistent effects on reinstatement. 

 

Adenosine A1 receptor stimulation temporally dissociated from extinction training has no 

effect on extinction responding or subsequent reinstatement responding at the 

previously inactive lever 

Analysis of inactive lever responding during extinction training revealed no significant 

differences between treatment groups (F1,60 = 1.84, p = 0.1998) or the treatment X 

session interaction (F5,60 = 1.28, p = 0.2852), but a significant main effect of session 

was observed (F1, 12 = 7.08; p< 0.0001). 

Inactive lever responding was also evaluated and there were no significant main 

effects of session on cue- (F2, 42 = 2.38; p = 0.10), or quinpirole-induced (F2, 42 = 2.38; p 

= 0.10) reinstatement, however, analysis of cocaine-induced drug seeking revealed a 

significant main effect of session (F1, 12 = 12.58; p = 0.004). No significant main effects 

of treatment were detected in cue- (F1, 12 = 0.11; p = 0.75), cocaine- (F1, 12 = 0.13; p = 
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0.91), or quinpirole-induced (F1, 12 = 0.89; p = 0.36) reinstatement. Additionally, no 

interactive effects were observed in any of the reinstatement tests (cue: F1, 12 = 0.21; p = 

0.66; cocaine: F1, 12 = 0.50; p = 0.49; quinpirole: F1, 12 = 0.89; p = 0.36). 

 

Adenosine A2A receptor blockade has no effect on extinction responding 

Prior to extinction training, animals were assigned to treatment groups based on 

their cocaine intake over the last five self-administration sessions (figure 4.5). Lever 

responding was then extinguished in six daily sessions where a pretreatment of vehicle 

or the adenosine A2A receptor antagonist, SCH 442416 (0.3, 1, or 3 mg/kg) was 

administered prior to each extinction training session (figure 4.5). These doses of SCH 

442416 were chosen based on previous work illustrating that low doses (0.3 and 

1.0 mg/kg) primarily inhibit presynaptic adenosine A2A receptors decreasing both 

locomotor activity and evoked glutamate release, while 3.0 mg/kg inhibits postsynaptic 

adenosine A2A receptors to increase locomotor activity (Orru et al, 2011a; Orru et al, 

2011b). Analysis of extinction responding over the entire 4-h session revealed a 

significant main effect of session (4 h: F 5,135 = 79.04, p < 0.0001; 2 h: F 5,135 = 85.74, 

p < 0.0001), but there was no main effect of treatment or treatment X session interaction. 

 

Presynaptic adenosine A2A receptor blockade has no effect on extinction responding at 

the previously inactive lever 

Analysis of inactive lever responding during the extinction sessions revealed 

significant main effects of session (2 h: F5, 70 = 4.79; p < 0.001 & 4 h: F5, 70 = 4.78; p <  



	
   102 

 
	
   
Figure 4.5 Blocking adenosine A2A receptors during extinction has no effects on 
extinction responding. a) Average number of cocaine infusions and active lever 
responses in each 4-h session over the last 6 days of the self-administration phase. b) 
adenosine A2A receptor antagonism by SCH 442416 (0.3, 1, or 3 mg/kg, i.p.) has no 
effect on extinction responding when administered immediately prior to the beginning of 
each 4-h extinction session 
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0.001). No significant main effects of treatment (4 h: F1, 70 = 0.01; p = 0.95) or significant 

interactive effects (4 h: F5, 70 = 0.38; p = 0.89) were observed on inactive lever 

responding during extinction. 

 

Presynaptic A2A receptor blockade during extinction training decreases subsequent 

cocaine- and quinpirole-induced reinstatements 

SCH 442416 administered during extinction training dose dependently inhibited 

subsequent reinstatement induced by cocaine and quinpirole but had no effect on cue-

induced reinstatement (figure 4.6). Analysis of active lever responding during cue-

induced reinstatement revealed a significant main effect of reinstatement (F 

1,26 = 58.12, p < 0.0001), but there was no main effect of treatment or treatment X 

reinstatement interaction. Analysis of active lever responding during cocaine-induced 

reinstatement revealed a significant treatment X reinstatement interaction (F 3,27 = 4.02, 

p < 0.05) and significant main effects of treatment (F 3,27 = 3.98, p < 0.05) and 

reinstatement (F 1,27 = 29.42, p < 0.0001). Post hoc analyses demonstrate that 

pretreatment with either 0.3 or 1.0 mg/kg SCH 442416 during extinction training 

significantly reduced cocaine-induced reinstatement compared to vehicle and 3 mg/kg 

SCH 442416 (vehicle vs 0.3 SCH 442416: t 27 = 2.40, p < 0.05, vehicle vs 1.0 SCH 

442416: t 27 = 2.79, p < 0.05). Analysis of active lever responding during quinpirole-

induced reinstatement revealed a significant treatment X reinstatement interaction (F 

3,26 = 3.13, p < 0.05), and significant main effects of treatment (F 3,26 = 3.05, p < 0.05) 

and reinstatement (F 1,26 = 36.70, p < 0.0001) were observed. Post hoc analyses  
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Figure 4.6 Blocking presynaptic, but not postsynaptic, adenosine A2A receptors during 
extinction produces enduring reductions on reinstatement of cocaine seeking. a) 
Blocking adenosine A2A receptors during extinction training has no effect on subsequent 
cue-induced reinstatement. b) Pretreatment of SCH 442416 during extinction training 
impaired subsequent reinstatement of cocaine-induced seeking when administered at 
doses effective at blocking presynaptic adenosine A2A receptors (0.3 or 1 mg/kg). c) 
Similarly, antagonism of presynaptic adenosine A2A receptors during extinction also 
impaired subsequent cocaine seeking induced by quinpirole. Asterisks indicate 
significant from vehicle pretreatment (t test, p < 0.05)  
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demonstrate that pretreatment with either 0.3 or 1.0 mg/kg SCH 442416 during 

extinction training significantly reduced quinpirole-induced reinstatement compared to 

vehicle and 3 mg/kg SCH 442416 (vehicle vs 0.3 SCH 442416: t 27 = 2.72, p < 0.05 and 

vehicle vs 1.0 SCH 442416: t 27 = 2.34, p < 0.05). 

 

Presynaptic A2A receptor blockade during extinction decreases subsequent cue-, 

cocaine- and D2 agonist-induced reinstatement at the previously inactive lever 

Inactive lever responding from the reinstatement session was compared to inactive 

lever responding from the last hour of the extinction phase that occurred immediately 

prior. No significant main effects of session were observed for any of the reinstatement 

sessions (cue: F1, 14 = 3.84; p = 0.07; cocaine: F1, 14 = 3.93; p = 0.07; quinpirole: F1, 14 = 

2.05; p = 0.17). For cue-induced reinstatement, a significant main effect of treatment 

(F1,14 = 5.90; p< 0.05) was observed, however, no significant main effect of treatment 

was detected for cocaine- (F1, 14 = 0.11; p = 0.75) or quinpirole-induced (F1, 14 = 0.35; p 

= 0.56) reinstatement. No interactive effects were observed (cue: F1, 14 = 3.03; p = 0.10; 

cocaine: F1, 14 = 0.20; p = 0.66; quinpirole: F1, 14 = 0.35; p = 0.56). 

 

Discussion 

We have previously shown that stimulation of adenosine receptors can directly 

attenuate the reinstatement of cocaine seeking induced by pharmacological stimuli 

(Bachtell et al, 2009; Hobson et al, 2013; O'Neill et al, 2012). Here, we examine the 

effect of adenosine receptor stimulation or blockade on extinction responding and 
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subsequent reinstatement. Our findings reveal that stimulation of adenosine A1 

receptors or adenosine A2A receptors inhibit initial extinction responding, which parallels 

previous work from our lab and others illustrating that adenosine receptor stimulation 

can inhibit different types of cocaine seeking including the initiation of cocaine taking 

(Knapp et al, 2001), as well as cue- and drug- primed reinstatement (Bachtell et al, 

2009; Hobson et al, 2013; O'Neill et al, 2012). We suspect these reductions in initial 

cocaine seeking observed on the first day of extinction training are due to the ability of 

stimulation at postsynaptic adenosine A1 receptors and adenosine A2A receptors to 

antagonize activity of dopamine D1 and D2 receptors, respectively (Franco et al, 2007; 

Fuxe et al, 2007a; Tozzi et al, 2007; Yabuuchi et al, 2006). However, only adenosine A1 

receptor stimulation produced lasting reductions in cocaine- and dopamine D2 agonist-

induced cocaine seeking. These persistent effects on reinstatement were not observed 

when adenosine A1 receptor stimulation was temporally dissociated from extinction 

training. In order to further elucidate the role of adenosine receptors in cocaine seeking 

we examined the effects of antagonizing presynaptic adenosine A2A receptors, a 

mechanism known to facilitate presynaptic adenosine A1 receptor activity (Orru et al, 

2011a), during extinction training. While this treatment had no direct effect on extinction 

responding, it produced persistent decreases in cocaine- and dopamine D2 agonist-

induced cocaine seeking. Notably, antagonism of postsynaptic adenosine A2A receptors 

had no effect on extinction or subsequent reinstatement. These results suggest that 

adenosine modulation during extinction can produce lasting effects on reinstatement. 
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It is important to consider the anatomical and neuronal locations of adenosine 

receptors when interpreting our results. Both Adenosine A1 receptors and adenosine 

A2A receptors are highly localized to the NAc, caudate and putamen where they have 

been shown to regulate cocaine-mediated responses (Ferre et al, 2011; Fink et al, 

1992; Fuxe et al, 2007a; Hobson et al, 2012; O'Neill et al, 2012). Presynaptic adenosine 

A1 receptors in the striatum are located on glutamate terminals to reduce basal 

glutamate release (Corsi et al, 1997; Mahan et al, 1991; McCool and Farroni, 2001; 

Quarta et al, 2004; Solinas et al, 2002). Presynaptic adenosine A2A receptors are 

expressed specifically on glutamate terminals that synapse onto dopamine D1 receptor-

expressing GABA neurons of the direct pathway where they act to enhance glutamate 

release (Corsi et al, 1997; Martire et al, 2011; Orru et al, 2011b; Quarta et al, 2004; 

Quiroz et al, 2009; Rosin et al, 1998; Sebastiao and Ribeiro, 1996). Postsynaptic 

adenosine A1 receptors are expressed on the direct pathway neurons of the striatum 

where they oppose actions of dopamine D1 receptors and decrease glutamate receptor 

trafficking (Fuxe et al, 2007a; Hobson et al, 2013). Postsynaptic adenosine A2A 

receptors colocalize with dopamine D2 receptors on the indirect pathway striatal neurons 

where they oppose the intracellular signaling cascades of dopamine D2 receptors and 

increase glutamate receptor trafficking (Fuxe et al, 2007a; Hakansson et al, 2006; Tozzi 

et al, 2007). Cocaine self-administration produces persistent alterations in glutamate 

homeostasis in the NAc and other reward-related brain areas (Baker et al, 2003a; 

Cornish et al, 2000; Kalivas et al, 2005; McFarland et al, 2003; Pierce et al, 1996; Reid 

and Berger, 1996). Cocaine seeking is associated with reduced basal extracellular 
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glutamate levels and increased release of glutamate in the NAc in response to a 

cocaine prime (McFarland et al, 2003). Thus, adenosine receptors in the striatum are 

capable of modulating both dopamine and glutamate signaling to impair cocaine 

seeking during extinction and reinstatement procedures. We suspect our effects are 

primarily mediated by adenosine receptors within the striatum, although future studies 

are necessary to identify the contribution of additional brain regions (see below). 

Given the presynaptic and postsynaptic actions of adenosine A1 receptors to reduce 

glutamate neurotransmission in the striatum, we were somewhat surprised to observe 

decreased cocaine seeking throughout extinction training. Previous evidence suggests 

that increased, not decreased, glutamate activity during extinction facilitates this new 

learning (Nic Dhonnchadha et al, 2010; Self et al, 2004; Sutton et al, 2003; Thanos et al, 

2011a; Thanos et al, 2011b). However, adenosine A1 receptors are expressed 

throughout the brain where they inhibit glutamate signaling (Mahan et al, 1991).  It 

seems likely that stimulation of adenosine A1 receptors in areas such as the 

hippocampus or basolateral amygdala are involved in decreasing extinction responding 

since both of these structures play a role in context-induced cocaine seeking (Cooper et 

al, 2006; Fuchs et al, 2005; Kalivas et al, 2003; Lasseter et al, 2010; Ramirez et al, 

2009; Schmidt et al, 2005; Wells et al, 2013). Stimulation of adenosine A1 receptors in 

either the hippocampus (Branisteanu et al, 1987; Poli et al, 1991) or basolateral 

amygdala (Heinbockel and Pape, 1999; McCool et al, 2001) inhibits the activity of these 

structures and we suspect that this may contribute to the direct effects decreased of 

adenosine A1 receptor stimulation on extinction responding. 



	
   109 

Adenosine A1 receptor stimulation during extinction training also produced lasting 

decreases in cocaine- and dopamine D2 agonist-induced reinstatement. The persistent 

effects on subsequent reinstatement testing may result from decreases in overall 

glutamate release in the NAc and other areas during extinction training since 

dissociation of adenosine A1 receptor stimulation from extinction sessions did not 

produce the same lasting effects. This decreased glutamate release coupled with 

postsynaptic adenosine A1 receptors that reduce glutamate signaling in direct pathways 

neurons may help to consolidate extinction-induced changes that impair subsequent 

reinstatement. We determined if presynaptic adenosine receptors played a preferential 

role in these persistent effects by administering several doses SCH 442416, a 

presynaptic adenosine A2A receptor antagonist and facilitator of presynaptic adenosine 

A1 receptors inhibitory actions on glutamate terminals, as demonstrated by its ability to 

reduce cortically-evoked glutamate release in the striatum (Orru et al, 2011a). We 

observed that presynaptic, but not postsynaptic antagonism of adenosine A2A receptors 

during extinction produced lasting decreases on reinstatement, although it did not have 

any direct effects on extinction responding. This may be partly due to the selective 

presynaptic expression of adenosine A2A receptors on cortical glutamate terminals onto 

direct pathway neurons (Orru et al, 2011a; Quiroz et al, 2009). Only two previous 

studies have identified and examined the presynaptic actions of SCH 442416 (Orru et 

al, 2011a; Orru et al, 2011b). This work provides more evidence for SCH 442416 as a 

presynaptic adenosine A2A receptor antagonist at low doses since the high dose (3 

mg/kg) of SCH 442416 had opposite effects on reinstatement compared to the 2 lower 
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doses (0.3 and 1 mg/kg). Together, these findings suggest that presynaptic adenosine 

A1 receptor stimulation of cortical terminals may produce lasting effects on cocaine 

seeking when concurrent with extinction training, while postsynaptic adenosine A1 

receptor stimulation alone or in combination with presynaptic adenosine A1 receptor 

stimulation reduces extinction responding directly. 

Adenosine A2A receptor stimulation resulted in decreased cocaine seeking during the 

first day of extinction training, but had no effect on subsequent reinstatement 

responding. This initial reduction in extinction responding is likely due to mild increases 

in overall glutamate transmission in the NAc during extinction. Increased glutamate 

transmission could result from either presynaptic adenosine A2A receptor stimulation of 

glutamate terminals that synapse onto the direct pathway neurons (Corsi et al, 1997; 

Martire et al, 2011; Orru et al, 2011b; Sebastiao et al, 1996) or postsynaptic adenosine 

A2A receptors that offset dopamine D2 receptor inhibition of glutamate signaling in the 

indirect pathway neurons (Ferre et al, 2011; Mayfield et al, 1993; Mingote et al, 2008; 

Shindou et al, 2003). These results are comparable to the facilitation of extinction 

observed with the partial NMDA glutamate receptor agonist, d-cycloserine (Thanos et al, 

2011a; Thanos et al, 2011b). It is unclear why adenosine A2A receptor stimulation does 

not have persistent effects akin to d-cycloserine (Paolone et al, 2009), especially 

because extinction appears to increase expression of adenosine A2A receptors, and this 

alteration would likely lead to decreased relapse susceptibility (Frankowska et al, 2013). 

This may be due to adenosine A2A receptor stimulation not effectively influencing 
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presynaptic glutamate transmission as we suspect occurs with presynaptic adenosine 

A1 receptor stimulation or presynaptic adenosine A2A receptor blockade.  

It is possible that our adenosine agonists and antagonist are affecting astrocytic 

mechanisms of neurotransmitter release/reuptake, which could contribute to our 

behavioral effects. In addition to alterations in glutamate signaling, changes in GABA 

signaling have also been implicated in cocaine seeking (Filip and Frankowska, 2007a, 

2008; Filip et al, 2007b; Frankowska et al, 2008a, b; Tang et al, 2005; Torregrossa et al, 

2008; Wydra et al, 2013). In fact, cocaine self-administration appears to increase basal 

extracellular GABA in the accumbens and ventral pallidum (Wydra et al, 2013) and 

decrease GABAb receptor binding (Frankowska et al, 2008a, b). Cocaine-primed 

reinstatement results in increases in GABAb receptor binding (Frankowska et al, 2008a) 

and decreases extracellular GABA in the ventral pallidum (Tang et al, 2005; 

Torregrossa et al, 2008). Increasing adenosine transmission in the accumbens results 

in increased expression of glial glutamate transporter (GLT-1) mRNA and glutamate 

uptake (Wu et al, 2010), which is associated with persistent attenuation of cocaine- and 

cue-primed reinstatement (Knackstedt et al, 2010). It seems unlikely that our behavioral 

effects are due to increases in GLT-1 since blockade of adenosine A2A receptors 

mimicked the effects of adenosine A1 receptor stimulation on subsequent cocaine 

seeking. On the other hand, stimulation of adenosine A1 receptors decreases GABA 

transport into astrocytes, while stimulation of adenosine A2A receptors increase the 

uptake of GABA into astrocytes (Cristovao-Ferreira et al, 2013; Kirk and Richardson, 

1994). Thus, increasing extracellular GABA through adenosine A1 receptor stimulation 
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or adenosine A2A receptor blockade could countermand the GABA decrease associated 

with reinstatement. It is currently unclear how chronic adenosine A1 receptor stimulation 

or adenosine A2A receptor blockade during extinction training may affect extracellular 

GABA levels either basally or in response to a pharmacological-prime. Future studies 

should investigate the role of adenosine receptor modulation on GABA transmission.  

Further research is necessary to fully elucidate the role of adenosine receptors in 

extinction and subsequent reinstatement. All experiments presented here used systemic 

administration of adenosine receptor agonists and antagonists; microinjections targeting 

these receptors specifically in the NAc would clarify the contributions of adenosine 

receptors located elsewhere in the brain. Future studies should also use microdialysis to 

identify the effects of adenosine A1 receptor and adenosine A2A receptor stimulation as 

well as presynaptic adenosine A2A receptor blockade on extracellular glutamate and 

GABA in the NAc during extinction and subsequent drug-primed reinstatement.  

Together, these findings build upon evidence demonstrating that adenosine receptor 

stimulation negatively regulates cocaine seeking in a variety of situations. These 

findings are novel because they illustrate lasting effects of a pharmacological treatment 

administered during extinction training on drug-induced cocaine seeking. This type of 

phenomenon may provide the basis for realistic treatment of human cocaine addiction, 

where it is often not feasible to treat an acute relapse episode. Future studies should 

examine the mechanisms by which presynaptic adenosine A1 receptor stimulation 

and/or presynaptic adenosine A2A receptor blockade produces these lasting effects on 

cocaine seeking.  
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Chapter 5: General Discussion 

 The data presented here support recent findings that distinct populations of 

adenosine receptors within the striatum exist (Orru et al, 2011a; Orru et al, 2011b), and 

targeting these receptors can differentially modulate cocaine seeking following chronic 

self-administration. We suspect the ability for adenosine receptors to modulate cocaine 

seeking in these various ways is related to their modulatory effects on dopamine and 

glutamate signaling within the ventral striatum. However, because we have examined 

only pharmacological effects on behavior the cellular mechanisms that underlie these 

findings remain ambiguous and much of this discussion is speculative regarding the 

mechanisms explanations of these findings.  

 

Mechanisms of Adenosine Signaling Within the Ventral Striatal Microcircuit 

The experiments presented in Chapter 2 show the direct effects of adenosine A2A 

receptor stimulation or blockade in the NAc on cocaine- or dopamine D2 receptor 

agonist-induced reinstatement. Stimulation of adenosine A2A receptors in the 

accumbens blocks cocaine- and quinpirole-induced drug seeking. However, at the same 

dose used in the cocaine reinstatement experiments, adenosine A2A receptor agonism 

has no effect on cocaine-induced locomotor activity or sucrose reinstatement indicating 

the specificity of these effects on cocaine seeking. Systemic and intra-NAc blockade of 

adenosine A2A receptors induces mild reinstatement, but antagonism of NAc adenosine 

A2A receptors in combination with sub-threshold doses of cocaine and quinpirole 

exacerbates reinstatement.  
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The mechanisms underlying these effects are unclear, but it is possible that 

stimulation of the adenosine A2A receptor facilitates the formation of A2A-D2 heteromers, 

ultimately decreasing ligand binding at dopamine D2 receptors and restoring the 

behavioral changes following chronic cocaine administration. It remains unclear whether 

heteromeric A2A-D2 receptor complexes or another interactive mechanism mediate our 

effects since receptors that are not in heteromeric complexes still play an antagonistic 

and reciprocal role in modulating cellular function (Ferre, 1997; Ferre et al, 1991a). 

Thus, administration of an adenosine A2A receptor agonist reverses the effects of a 

dopamine D2 receptor agonist on intracellular Ca2+ release (Yang et al, 1995) and 

immediate early gene expression in the striatum (Morelli et al, 1994; Svenningsson et al, 

1999a). Additionally, intracellular signaling cascades of adenosine A2A and dopamine D2 

receptors (see figure 5.1) have opposite effects on cAMP production and neuronal 

excitability (Schiffmann et al, 2007; Svenningsson et al, 1999a; Tozzi et al, 2007). In fact 

a different study from our lab, involving adenosine A1 receptor stimulation counteracting 

dopamine D1 agonist-induced cocaine seeking, found that PKA-mediated 

phosphorylation of AMPA receptors plays an important role in regulating reinstatement 

(Hobson et al, 2012).  

Stimulation of adenosine A2A receptors activates enkephalin-containing neurons 

in the striatum, which form the indirect pathway (Karcz-Kubicha et al, 2006; 

Svenningsson et al, 1999a), while stimulation of dopamine D2 receptors inhibits activity 

at these same neurons (Svenningsson et al, 1999a).  Decreased GABA release in the 

ventral pallidum is associated with cocaine seeking (Tang et al, 2005), and  
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Figure 5.1 Populations of adenosine receptors in the NAc. Postsynaptic adenosine A1 
and dopamine D1 receptors are colocalized on the direct pathway MSNs, while 
postsynaptic adenosine A2A

 and dopamine D2 receptors are colocalized on the indirect 
pathway. Presynaptic adenosine A1 receptors are present on all glutamate terminals in 
the NAc, but presynaptic adenosine A2A receptors are preferentially located on neurons 
that synapse onto the direct pathway.  
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dopamine D2 receptor stimulation in the NAc results in decreased GABA in the ventral 

pallidum through the indirect pathway (Floran et al, 1997).  Interestingly, stimulation of 

adenosine A2A receptors in the ventral striatum results in enhanced GABA input to 

downstream structures like the ventral pallidum (Mingote et al, 2008; Ochi et al, 2000). 

Together, these findings suggest that the reduction in cocaine seeking seen with 

adenosine A2A stimulation in the accumbens may be mediated by restoring cocaine-

induced decreases in GABA release in the ventral pallidum. Similarly, blocking the tonic 

inhibition of adenosine A2A receptors on dopamine D2 receptors allows minor stimulation 

of dopamine D2 receptors to further decrease GABA in the ventral pallidum and 

potentially drive cocaine seeking behaviors.  

It is worth noting that the mild reinstatement seen with MSX-3, an adenosine A2A 

receptor antagonist, may be related to combined actions at presynaptic and 

postsynaptic adenosine A2A receptors. Our studies in Chapter 3 show that KW 6002, an 

antagonist thought to have greater specificity to postsynaptic adenosine A2A receptors 

(Orru et al, 2011a), resulted in much more robust reinstatement responding when given 

alone. Also, administration of CGS 21680 possibly stimulates both pre- and 

postsynaptic adenosine A2A receptors, but it’s ability to inhibit dopamine D2 receptor 

signaling and stimulate indirect pathway neurons appears to be capable of overcoming 

any increase in glutamate release mediated by presynaptic receptors and administration 

ultimately blocks cocaine seeking.  

The experiments presented in chapter 3 examine the distinct effects of pre- and 

postsynaptic adenosine A2A receptor blockade on cocaine seeking. For these 
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experiments we used KW 6002 and SCH 442416 because a previous study has shown 

that these compounds exhibit preferential post- and presynaptic profiles, respectively 

(Orru et al, 2011a). Similar to our previous data systemic administration KW 6002 

produced strong cocaine seeking alone, and pretreatment also intensified reinstatement 

to a sub-threshold dose of cocaine. Conversely, systemic administration of SCH 442416 

did not induce reinstatement on it’s own, and pretreatment dampened cocaine-induced 

drug seeking. We suspect that the ability for SCH 442416 to reduce cocaine seeking is 

due to a decrease in glutamate release in the NAc, while the ability for KW 6002 to 

induce and enhance reinstatement is mostly likely due to removing the tonic inhibition of 

adenosine A2A receptors on dopamine D2 receptors.  

In order to verify this, we induced reinstatement by infusing either AMPA or 

cocaine into the mPFC or the NAc. A previous study has shown that cocaine infusion 

into the mPFC induces reinstatement that can be attenuated by blocking AMPA 

receptors in the NAc (Park et al, 2002), presumably infusion of AMPA into the mPFC 

would also result in the increased glutamate release in the NAc that generates 

reinstatement (McFarland et al, 2004; Torregrossa et al, 2008). Infusion of AMPA into 

the NAc has been shown to induce reinstatement through actions at glutamate 

receptors on MSNs (Cornish et al, 1999; Cornish et al, 2000; Ping et al, 2008; Suto et 

al, 2004), while infusion of cocaine into the NAc produces reinstatement through 

stimulation of dopamine receptors on both the direct and indirect pathway (Bachtell et 

al, 2005; Schmidt et al, 2006b). As expected, pretreatment with KW 6002 exacerbated 

cocaine seeking induced by infusion of AMPA or cocaine into the mPFC. Surprisingly, 
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reinstatement responding to an intra-NAc infusion of AMPA, but not cocaine, was 

enhanced by pretreatment with KW 6002. Although this was unexpected, we may be 

observing a ceiling effect since infusing cocaine directly into the NAc results in high 

rates of responding on the previously drug-paired lever. It’s also possible that allowing 

enhanced stimulation of dopamine D2 receptors by adenosine A2A receptor antagonism 

coupled with cocaine-induced dopamine increases shifted the animals into more 

stereotyped behavior since dopamine D2 receptors are thought to be responsible for 

stereotypy following chronic psychostimulant use (Ujike et al, 1990). Nevertheless, this 

data suggests that KW 6002 does in fact act postsynaptically to enhance the inhibitory 

effects of dopamine D2 receptors on indirect pathway neurons. Interestingly, 

pretreatment with SCH 442416 has no effect on reinstatement induced by intra-NAc 

infusion of AMPA or cocaine, but does block cocaine seeking stimulated by infusion of 

AMPA or cocaine into the mPFC. This effect supports the idea that blockade of 

presynaptic adenosine A2A receptors decreases mPFC glutamate release into the NAc 

and consequently blocks cocaine seeking. 

The differential effects of pre- and postsynaptic adenosine A2A receptors on 

cocaine seeking is supported by a study showing that striatal-specific knockdown of A2A 

receptors enhances locomotor activity in response to cocaine, while a forebrain-specific 

knockdown of adenosine A2A receptors reduces cocaine-induced locomotor activity 

(Shen et al, 2008). The data presented here suggests that blockade of postsynaptic 

adenosine A2A receptors located on MSNs in the NAc enhance cocaine seeking, while 

blockade of presynaptic adenosine A2A receptors on glutamatergic terminals decreases 
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cocaine seeking.  Taken together, these findings suggest that adenosine A2A receptors 

localized on the indirect pathway provide inhibitory control over cocaine seeking, 

whereas adenosine A2A receptors localized to glutamate terminals in the NAc enhance 

glutamate signaling to stimulate cocaine seeking.  

The experiments presented in chapter 4 investigate the effects of adenosine 

receptor agonism and antagonism on extinction and subsequent reinstatement after 

chronic cocaine self-administration. Both adenosine A1 and A2A receptor agonists 

administered prior to extinction training decreased responding on the previously drug-

paired lever on the first day of extinction training, however this effect was minor 

(confined to the first 15 min of the session) and was not seen in subsequent extinction 

training sessions. Remarkably, adenosine A1 receptor stimulation during extinction 

training decreased subsequent reinstatement responding to cocaine and quinpirole, but 

if administration of the agonist was dissociated from extinction training no effects on 

subsequent reinstatement were observed. Given that reinstatement was inhibited by 

adenosine A1, but not A2A, receptor stimulation, we suspected that modulating glutamate 

signaling during extinction training was most likely mediating this effect. This is because 

in vivo microdialysis experiments have reported little to no change in dopamine release 

during extinction, but large increases in glutamate (Suto et al, 2010). In fact, a more 

recent study has shown that increases in accumbal glutamate during extinction training 

correlates with cocaine expectancy (Suto et al, 2013). Adenosine A1 receptors are 

expressed on glutamate terminals in many parts of the brain, including the NAc, where 

stimulation will decrease glutamate release. Because presynaptic adenosine A2A 
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receptor blockade, which had no effect on extinction training, also attenuated 

subsequent cocaine and quinpirole-induced drug seeking it seems likely that tempering 

glutamate release during extinction training may provide a way to reverse striatal 

signaling altered by chronic cocaine use. More importantly, this method of treatment 

represents a more viable option for many addicts due to its persistent benefits.  

Based on the findings in the experiments presented here, we suspect that the 

direct and indirect pathways are playing distinctly different roles in cocaine 

reinstatement. Because dopamine D1 receptors are stimulatory, chronic cocaine taking 

results in repeated activation of the direct pathway, while simultaneously exerting 

inhibitory actions through dopamine D2 receptors resulting in repeated inactivation of the 

indirect pathway. This is supported by studies showing increased spine density in 

dopamine D1 but not D2 neurons following chronic cocaine exposure (Kim et al, 2011; 

Lee et al, 2006). Additionally, increases in mini EPSCs and decreases in mini IPSCs in 

direct pathway neurons coupled with decreases in mini EPSCs in indirect pathway 

neurons has been observed (Kim et al, 2011). Chronic cocaine has also been shown to 

increase ΔFosB in dopamine D1, but not dopamine D2 neurons (Lobo et al, 2013). 

Interestingly, overexpression of ΔFosB in the direct pathway, but not the indirect 

pathway, results in enhanced excitatory synaptic strength, spine density, and behavioral 

responses to cocaine (Grueter et al, 2013). Due to the opposing G protein coupling and 

intracellular signaling cascades of dopamine D1 and D2 receptors (Bertran-Gonzalez et 

al, 2008), chronic cocaine exposure may facilitate glutamate activation of dopamine D1 

neurons while inhibiting glutamate activation of dopamine D2 neurons (Lobo et al, 2011).  
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MSNs of the striatum typically exhibit hyperpolarized resting membrane 

potentials (Cepeda et al, 2008; Planert et al, 2013). At baseline indirect pathway 

neurons are more excitable than direct pathway neurons, but dopamine modulates this 

excitability in an opposing fashion (Cepeda et al, 2008; Lobo et al, 2011; Planert et al, 

2013). Dopamine increases intrinsic excitability in dopamine D1 neurons, but decreases 

intrinsic excitability in dopamine D2 neurons (Cepeda et al, 2008; Planert et al, 2013). 

Dopamine D1 receptor stimulation enhances PKA activity and alters Ca2+ and K+ 

channels to enhance the glutamate mediated "up-state" in these MSNs (Gerfen et al, 

2011; Lobo et al, 2011; Surmeier et al, 2007). Conversely, dopamine D2 receptor 

stimulation decreases PKA activity and alters Ca2+, Na+, and K+ channels decreasing 

glutamatergic reactivity and shifting these MSNs into a “down-state” (Gerfen et al, 2011; 

Lobo et al, 2011; Surmeier et al, 2007). This imbalance in striatal signaling may 

ultimately underlie the vulnerability to relapse seen in chronic cocaine users. In fact, the 

circuitry of the indirect pathway is such that reduced activation results in decreased 

GABA release in the ventral pallidum which results in exacerbated inhibition of the 

medial dorsal thalamus and ultimately less activation of the PFC. Impaired signaling in 

this circuitry (Agnoli et al, 2013; Pezze et al, 2007) may explain the lack of behavioral 

control observed in cocaine addicts (Coffey et al, 2003; Garavan and Stout, 2005; 

Kaufman et al, 2003; Verdejo-Garcia et al, 2006).  

Presynaptic adenosine A2A receptors in the NAc are preferentially expressed on 

glutamate terminals that synapse on to dopamine D1 expressing neurons (see figure 

5.1) (Quiroz et al, 2009). They are therefore able to selectively modulate glutamate 
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release to the direct pathway but not the indirect pathway. This makes them an ideal 

target for decreasing glutamate signaling in dopamine D1 neurons and possibly 

reversing imbalanced striatal signaling resulting from chronic cocaine use. We 

hypothesize that the long-term decreases in relapse susceptibility that we observe in the 

extinction experiments presented in chapter 4 are due to a reversal of this imbalance. 

Extinction training increases glutamate release in the NAc, but blocking presynaptic 

adenosine A2A receptors decreases glutamate release at direct pathway synapses while 

leaving glutamate release to indirect pathway neurons unaffected. This is ideal because 

increased glutamate signaling to dopamine D2 expressing neurons will likely increase 

the excitability of this chronically inhibited pathway, while simultaneously decreasing 

excitability in the over activated dopamine D1 neurons. Together these effects may 

induce plasticity that approximate pre-cocaine conditions and restore neurotransmission 

in the ventral striatum, or at the very least help to decrease relapse vulnerability in 

addicts. 

 

Potential Mechanisms of Adenosine Signaling in Glia 

Adenosine A1 and A2A receptors are also expressed on astrocytes and microglia. 

It is possible that the behavioral effects we observe are in part due to actions of the 

adenosine agonists and antagonists on these cells that have been implicated in cocaine 

addiction (Beardsley and Hauser, 2014; Vijayaraghavan, 2009). Astrocytes are 

particularly important in regulating extracellular neurotransmitter levels, including 

glutamate. Importantly, because we know that glutamate homeostasis is disrupted by 
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chronic cocaine exposure adenosine actions at astrocytes may play an important role in 

decreasing reinstatement. Overexpression of adenosine A1 receptors in astrocytes has 

been shown to increase expression and function of EAAT2 (excitatory amino acid 

transporter 2) also known as GLT-1 (Wu et al, 2011). EAAT2/GLT-1 is an important 

regulator of extracellular glutamate, and several studies have shown increasing 

expression with ceftriaxone, a β-lactam antibiotic, decreases cue and cocaine-induced 

reinstatement restores alterations in glutamate homeostasis (Knackstedt et al, 2010; 

Sari et al, 2009; Trantham-Davidson et al, 2012). Therefore, it is possible that 

adenosine A1 receptor stimulation during extinction decreases subsequent 

reinstatement by increasing EAAT2/GLT-1 expression. However, because dissociation 

of adenosine A1 receptor agonism from extinction training failed to decrease 

subsequent cocaine seeking this seems unlikely. Stimulation of adenosine A2A 

receptors on astrocytes appears to inhibit EAAT2/GLT-1 mediated glutamate uptake, 

and prolonged activation of these receptors can decrease expression of these 

transporters (Matos et al, 2012; Nishizaki et al, 2002). If our presynaptic adenosine A2A 

receptor antagonist is binding to astrocytic adenosine receptors, it is feasible that its 

ability to decrease subsequent reinstatement following administration during extinction 

training (chapter 4) or acutely decrease reinstatement (chapter 3) are related to 

increased glutamate uptake by astrocytes. Still, if this were the case we would expect 

that administration of SCH442416 would also decrease reinstatement induced by intra-

NAcc AMPA or cocaine infusion, which it has no effect on.  

Microglia have also been implicated in the addictive processes of cocaine and 

other psychostimulants (Beardsley et al, 2014; Northcutt et al, 2015). Increased 
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activation of microglia can increase extracellular glutamate as well as AMPA and NMDA 

receptor expression (Grace et al, 2014). The effects of adenosine receptor stimulation 

on microglia are complex. Adenosine A1 receptor agonism decreases morphological 

activation of microglia (Luongo et al, 2014), while adenosine A2A receptors appear to 

increase activation of microglia (Orr et al, 2009). However, at least one study has 

reported that instead of increasing proinflammatory cytokine release from these 

activated microglia, adenosine A2A receptors act to inhibit release of proinflammatory 

cytokines, like TNF-α, induced by an LPS challenge (Newell et al, 2015). It is difficult to 

determine whether our effects on cocaine seeking are mediated by adenosine receptors 

on microglia since there is conflicting data regarding the effects of adenosine A2A 

receptor stimulation on microglia exist, but it is plausible that decreasing extracellular 

glutamate through microglial mechanisms would decrease reinstatement.  

 

Conclusions 

Cocaine addiction is a significant public health problem, and the rate of relapse in 

addicts is very high. Identifying mechanisms to decrease relapse susceptibility is of 

utmost importance. Decades of research has identified that chronic cocaine use results 

in significant changes in glutamate and dopamine neurotransmission in NAcc, and that 

these nuanced changes are responsible for persistence of drug seeking behaviors even 

after prolonged abstinence. The data presented here suggest that adenosine, a known 

modulator of dopamine and glutamate signaling, may be an ideal target for reversing 

striatal signaling changes caused by chronic cocaine. These effects also verify that at 

least two separate populations of adenosine receptors with opposing effects on cocaine-
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mediated behaviors exist within the striatum. Promoting activation of indirect pathway 

neurons through postsynaptic adenosine A2A receptor stimulation decreases cocaine 

seeking, while blockade of these same receptors enhances cocaine seeking. Blockade 

of presynaptic adenosine A2A receptors, on the other hand, decreases activation of the 

direct pathway by inhibiting glutamate release preventing cocaine seeking. Perhaps 

most interesting of the findings presented here is that blockade of presynaptic 

adenosine A2A or A1 receptors during extinction training can prevent subsequent 

reinstatement, and is likely the most feasible as a treatment option for addicts. While the 

experiments presented in this dissertation explore the effects of adenosine receptors on 

cocaine seeking the identification of the mechanisms responsible for these effects 

remain elusive and future studies should to explore viable mechanisms underlying the 

observations presented here. 
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