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FIG. 20. Number of poles on the positive real axis along the edge of a grid exterior to the fundamen-
tal domain. The initial conditions for solutions asymptotic to w; in the top middle, bottom left,
and bottom right frames occur outside of the domain shown at (u(0) = —4.6822,u/(0) = 20.7787),
(u(0) = —10.7942,u/(0) = 120.3759), and (u(0) = 49.4606,u'(0) = —2442.3215), respectively. The
locations of these parameters in « vs. 3 space are shown later in figure 21. A detailed description
of the markers and shading is given in figure 3.

methodology of counting poles along the positive, and now negative, real axes allows the

identification of further special characteristics of these solutions.

In figure 21 the pole counts are shown along the negative and and positive real axes (left
and right frames, respectively) overlayed with the Weyl chambers marked by solid curves.
Also in these frames, dashed lines mark the boundaries of regions in the a versus 3 plane
where these solutions have only a finite number of poles on the negative real axis. Notice
that these dashed curves form a regular structure similar to that of the Weyl chambers, with
the parabolas offset by one unit on the « axis and the horizontal lines occurring at  values

where these new parabolas and those from the Weyl chambers intersect.
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FIG. 21. Number of poles on the positive (right) and negative (left) real axis for solutions asymp-
totic to w; ~ —2/3z as z — +o00 and z € R and each a and . The solid curves indicate the
boundaries of the Weyl chambers, while the dashed lines show the boundaries of regions of finite
poles on both the positive and negative real axes. Note that in this case 8 > 0 implies an infinity
of poles along R™. The circles (red) containing an x indicate those parameters shown in figure 20.
The changes in shading occur simultaneously in the left and right frames corresponding to a pole
moving from one half of the real axis (positive/negative) to the other.

1. The Tops of the Parabolas

To begin, consider the parameter choices at the tops of these new parabolas. These occur
at a« = 2m and f =0, m € Z. In these cases the poles nearest the origin form very regular
patterns. Examples for several different choices of m are shown in figure 22. Notice the
pole structure near the center of these figures. When m < 0 poles of residue +1 align in a
structure similar to the roots with a positive real part of the degree m Okamoto I polynomial,
while poles of residue —1 appear similar to the roots of the degree m — 1 polynomial. On the
other hand, when m > 0 the poles of residue +1 (likewise, —1) align in a structure similar
to all of the roots of the order m + 1 (likewise, m) polynomials. Note that the Okamoto
I polynomials in this context are singly indexed as in Ref. 19 while those in the rational

solutions of Py are doubly indexed generalized Okamoto polynomials as in Ref. 7.
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FIG. 22. Zero and pole locations of solutions to (1) with various values of m. Note that o = 2m
and 8 = 0. The case a = m = 0 is shown in one of the subplots of figure 5.

2. Solutions Along the Boundaries of the New Weyl-Like Chambers

When « and 8 are taken along the boundaries of the new chambers the solutions asymp-
totic to —2/3z are nonoscillatory as z — —oo. Examples of this are shown in the center
frames of figures 23 and 24. Now, if o or 3 are varied slightly such that the choice of param-
eters no longer falls on one of the boundaries, these solutions can have either an infinity of
poles or oscillate as z — —oo. Examples of this are also shown in the left and right frames

of figures 23 and 24.

3. When [ is Positive

If § > 0, then figure 21 shows that all of the solutions asymptotic to wi; ~ —2/3z as
z — 400, z € R, have an infinity of poles on the negative real axis. These solutions also do
not generally have an entire half-plane free of poles. Instead, numerical evidence points to a

value zy € R (possibly positive or negative) such that for all z with Re(z) > 2, the solution
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Other Solutions With a Pole Free Half-Plane

feature a pole free half-plane. These solutions arise for u
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v,6,d1,d2?

FIG. 23. Solutions (pole locations and residues) normal to the parabola 8 = —2(a — 2)2.
frames depict the solutions asymptotic to —2/3z as z — 400. The center frames occur directly
along the parabolas where a = ap = 1.25 (top) and o = a9 = 2.75 (bottom). The left and right
frames in both the top and bottom then depict the solutions along the line normal to the parabola

free half-plane feature different asymptotics as z — +oo than —%z.

174

All

These solutions asymptotic to —2/3z as z — +oo are not the only solutions that have a
half-plane pole free. There are, of course, the rational solutions. Likewise, there are solutions
expressible in terms of parabolic cylinder or confluent hypergeometric functions that also
k = 1,2, when either d; =0

or do = 0 with examples shown in figure 25. Generally, these other solutions with a pole
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FIG. 24. Solutions (pole locations and residues) normal to the parabola f = —2(a + 2)2. All
frames depict the solutions asymptotic to —2/3z as z — 400. The center frames occur directly
along the parabolas where o = op = —1.25 (top) and a = ag = —2.75 (bottom). The left and
right frames in both the top and bottom then depict the solutions along the line normal to the
parabola at o = ag at ag £ 1076,

D. Solutions With Adjacent Pole Free Sectors

In Ref. 5 it is pointed out that there are solutions for Py, when @ = 8 = 0 that are similar
to the tronquée solutions of P;. For both P; and Py (with o = 8 = 0) these solutions are
characterized by at least two adjacent pole free sectors. In the case of Py these sectors are
shown in figure 8. Also, when a = 8 = 0, these solutions are characterized as appearing at
the boundaries of shaded regions or along curves within the pole counting diagrams. From
here on, the analogy with the trongée solutions of P; will be dropped and these solutions
will be referred to only as having adjacent pole free sectors. The solutions asymptotic to
wy, ~ —2/3z were considered separately in section VIC, but they would certainly fall into
this category. Other solutions with adjacent pole free sectors are asymptotic to w—; and
wi, p= %1, as z — +oo and z € R. In certain cases there are two or three such trends

present simultaneously in a single solution, but the trends occur along different segments of
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FIG. 25. Examples (pole locations and residues) of ul[lpgif] a2 k=1,2, for dy = 0 or d2 = 0. These

solutions feature a half plane that contains only a finite number of poles.

the positive real axis. For instance, ICs generating solutions matching both w7}, and w™,
occur when 3 = 0. This is not surprising considering (14) and (15) and that these are simply
the solutions asymptotic to (12). Several examples are available in°.

In the following figures multiple frames will be shown depicting the different types of so-
lutions with adjacent pole free sectors for each («,3) pair discussed. In most cases, solutions
where two or more behaviors appear in the same solution will be given in at least one frame.
In every case, the solutions shown occur at the boundary of or along the curve located in
the first shaded region extending from «’(0) = 5 to «/(0) = —5 in the right half plane (i.e.
u(0) > 0) of the appropriate pole counting figure. These solutions are all given along the
line u/(0) = 0.

First, figures 26 and 27 show two types of solutions where the asymptotic behaviors
of w:[, @ = £1, and w—,; are simultaneously present (along different segments of the real
axis) in a solution generated from a single IC. These are shown for (« = 1, § = 0) and
(=0, 5=-2).

On the other hand, solutions that match both the roots w™, (again, in different segments
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FIG. 26. Solution types (along the real axis (top) and pole locations and residues (bottom)) with
adjacent pole free sectors for « = 1 and 8 = 0. In all frames «'(0) = 0. The left and right frames
both show that these solutions simultaneously match the roots (in different segments of the real

axis) w}, p=+1, and w7;.
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FIG. 27. Solution types (along the real axis (top) and pole locations and residues (bottom)) with
adjacent pole free sectors for « = 0 and 8 = —2. In all frames u/(0) = 0. The left and right frames

both show that these solutions simultaneously match the roots w:[, p==*1, and w_;.
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of the real axis) were observed along the boundary f = —2(a — 1)?. An example appears in

figure 28 for the case o = 0.5 and g = —0.5.

u(0) = 3.07849913 u(0) = 3.58988631 u(0) = 4.03991834

20 40

20 0

-40

Im(2)
20 2 4

4

FIG. 28. Solution types (along the real axis (top) and pole locations and residues (bottom)) with
adjacent pole free sectors for a = 0.5 and § = —0.5. In all frames «/(0) = 0. The center frame
shows that there are solutions simultaneously matching both the roots wj_cl.

Finally, all other parameter choices with adjacent pole free sectors have distinct ICs that

generate solutions asymptotic to each of the roots w;’, i = =£1, and w_, as in the figure 29.

VII. CONCLUSIONS

This study of the fourth Painlevé equation started by numerically confirming various
previous analytic and asymptotic results. A further exploration of the fundamental domain
then identified solutions for general («a,3)-values with noteworthy characteristics, such as
numerous families of solutions with adjacent pole-free sectors. Also, solutions with a nearly
pole-free half plane were found.

Most of the observations in this study were obtained numerically, leaving analytical con-
siderations of some of the illustrated solution types an open topic. Although the explorations
extended outside of the fundamental domain in the («,3)-plane, they considered only (a,5)-

values with relatively small magnitude. Further studies could be performed to look at pairs
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FIG. 29. Solution types (along the real axis (top) and pole locations and residues (bottom)) with
adjacent pole free sectors for « = 0 and § = —0.5. In all frames «/(0) = 0. In this case, all frames
exhibit only one of the asymptotic behaviors wff, w==+1.

with much larger magnitude. Another extension would be to also consider solutions that

are complex-valued along the real axis.
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Abstract How far the stability domain of a numerical method for appmoating solutions

to differential equations extends along the imaginary endicates how useful the method is
for approximating solutions to wave equations; this maximaxtent is termed the imaginary
stability boundary, also known as the stability ordinaténds previously been shown that
exactly half of Adams-Bashforth, Adams-Moulton, and strgg Adams-Bashforth meth-
ods have nonzero stability ordinates. In this paper, weidenswo categories of Adams
predictor-corrector methods and prove that they followrailar pattern. In particular, if

p is the order of the method, ABAM p methods have nonzero stability ordinate only for
p=12 5.6, 9,10,..., and AB(p—1)-AMp methods have nonzero stability ordinates only
forp=3,4,7,8,1112,....

Keywords Adams methods Linear multistep methodsStability ordinate Predictor-
corrector- Imaginary stability boundaryFinite difference methodsStability region

Mathematics Subject Classification (2000)65L06- 65L12- 65L20- 65M06- 65M12

1 Introduction
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ODEs have stability regions that include an interval of ierf[—iS,iS ] on the imaginary
axis. We call the largest such value$ftheimaginary stability boundary (1SB) of the ODE
integrator, which is also known as the stability ordinatetHe context of solving semidis-
crete wave equations, one desires to use a method with al@Byevhich allows larger
stable time steps; methods with zero ISB’s (i.e., no imagia&is coverage in the stability
domain) will be unconditionally unstable. In this paper, @elore the question of which
Adams methods have nonzero ISB’s.

Adams-Bashforth (AB), Adams-Moulton (AM), and Adams piedi-corrector meth-
ods are widely used multistep methods for approximatingtsmis to first-order differen-
tial equations. These methods generally have lower cortipoéd cost per iteration than
equivalent-order Runge-Kutta methods (due to requiring one new function evaluation
per time step) while maintaining reasonably good accuradystability properties [1], [6].
A standardn-step Adams method for approximating solution%%o: f(t,y) has the form

1
Y=y + [ plbt ®
J

wheret; =to+ jh, his the stepsize, ang = y(to). Here,p(t) is the polynomial interpolating
the pointgty, yk) for j —m+1 <k < j (AB methods) ofj —m+1 <k < j+1 (AM methods).
We will henceforth usg = 0 to simplify the notation. AB methods have orgee mwhile
AM methods have ordegp = m+ 1.

In [2, Table G.3-1], it was observed (without proof) that ARtnods of ordep (AB p)
have nonzero ISB’s only for ordeps= 3,4, 7,8, 11,12,... and AMp methods have nonzero
ISB’s only for ordersp= 1,2, 5,6, 9,10,.... These results can be deduced from [7] and
were independently shown in [4] and [3]. While [7] is not dpable to staggered meth-
ods, [4] and [3] proved that staggered AB methods of opleave nonzero ISB’s only for
p=2234, 7,8 1112 ..., ; none of these articles addressed Adams predictor-¢orrec
methods. Henceforth, we will only consider nonstaggerethous.

This study revisits our previous results from [4] with a n@rnfiulation and then extends
our results to Adams predictor-corrector methods. In paldr, we examine the methods
AB p-AM p and AB(p—1)-AM p, both of which have ordep. We are unaware of any other
studies addressing the ISB’s of such methods for general prdn [2, Table G.3-1], it was
claimed that for such methods, ‘most’ had nonzero ISB’s &/lsbme’ had zero ISB’s. We
now proceed with proving that such methods follow very sampatterns to those of AB
and AM methods, with AB-AM p methods following the same pattern as Avhethods
and AB(p—1)-AM p methods following the same pattern as p\Biethods.

2 Preliminaries

When solving the linear probler%f = Ay, the edge of a stability domain is described by the
root £ = Ah of p(r) — £a(r) = 0 whenr travels around the unit circle= €. Here,p(r)
ando(r) are the generating polynomials of the method (see, e.g7, pf [B]).

To consider whether or not a stability domain has imaginaiy eoverage, we wish to
describe the behavior of the stability domain boundary gear0. For an exact method,
we haveé (8) = Inr (see, e.g. Theorem 2.1 of [6], usidg= %.) Thus an exact method
satisfies

& =Inr=In(e®) = io. )
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A numerical scheme of ordgrwill instead lead to
£(6) =i0+cp(i0)P" 1 +dp(i6)P2+0 ((ie)M) 3)

for some constants, anddp. The sign of the firsteal term in this expansion will dictate
whether the stability domain boundary near the origin switogthe right or to the left of the
imaginary axis. See Figure 1 for an illustration comparimggtability domains of AB2 and
AB3.

(a) (b)
0.8 =0 0.8 —
T~ ~ -—— -
0.6 06f ™=
0.4 \\ 0.4
0.2 0.2
MW wS
E 0 E
-0.2 -0.2
-0.4 ) -0.4
-0.6 —0.6 p=
_ - - td bl . - - -
-0.8 = -0.8
-0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2
Re() Re()

Fig. 1 Shown are portions of the boundaries of the stability regjiion (a) AB2 and (b) AB3, with the solid
line marking the presently relevant section of the stabditynain boundary near the origin. In both graphs,
we see thaf ~ 16 near@ = 0.. (a) If the first real term in the expansion§f6) is negative, then the ISB is
0. (b) If the first real term in the expansion &f6) is positive, then the ISB is nonzero. For AB3, the ISB is

51721*1 ~ 0.724. The intercepts of AB2 and AB3 on the real axis-afeand— ¢;, respectively.

2.1 Backwards difference forms of AB and AM methods

In [5][pp. 191-195], Henrici gave a backwards differencpresentation of (1) for AB and
AM methods. When applied t@f = Ay, anm-step AB method can be represented by

m-1
y1=Yo+hA Z) Y 04y, 4
k=

w0k () s ©)

Similarly, anm-step AM method can be represented by

where

m
yi=Yo+hA 5 v Oy, (6)
o

k= () s Q

where
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Henrici [5][p. 195] also established that

§ﬁ=w (8)

from which i = W — W1
Lemma 2.1 For all integersk > 3, y > .

Proof We first note an alternate way to expregsFrom (5),

= (—1) '/01 (ks) ds= k—ll/ols(er 1)(s+2)...(s+k—-1)ds. 9)

We now prove this lemma via induction. Evaluating (9) diegivesy; = % > % establish-
ing a base case. For the inductive step, we assume/jtbatjl for somej > 3 and seek to
establish thay; 1 > ;. From (9),

1
1s(s+1)(s+2)...(s+jfl)(s+j) < j ) < j )l 1
j+1 = " - ds> | —— i>|— | =
i+t /o IL j+1 j+1 v j+1/ ] j+1
Thusy > ¢ by induction. o
Direct evaluation of (9) givesp =1, y1 = % andy, = 1% Thus as a corollary, we also have
thaty > O for all integersk > 0.
Lemma 2.2 For all integersk > 1, y; < 0.
Proof Evaluating (7) directly givesg = 1 andy; = —%. For the general case, we rewrite
(7) to find
1
V= %/0 (s—1)s(s+1)(s+2)...(s+k—2)ds (10)
The integrand is negative for&s< 1, soy < 0fork> 1. O

2.2 Exploring the exact solution

Using & = Ah, the exact solution t§) = Ay is y(t) = €' = f'/" where, without loss of
generality, we have chosén= 0 andy(tg) = 1. For an exact method,=i6 from (2), so

yn=y(nh) =& (11)
An alternate way to view this equation is that we are seeHiegeikact solution to the rele-
vant difference equation when following the rodthat hasr = €9, which givesy, = r" =
(69)" =&,
Lemma 2.3 Wheny, = &,

Oy = (i6)X {1— 'é‘ (i0) +O<(i9)2)} .
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Proof Fory, =€, Oyo = (1—e7'?) andOkyp = (1—e*‘9)k so that
Okyo = {17 (1+(ie)+21!(ie)2+o((ie)3)ﬂk
_ (o)X {17 1(i9)+0<(i9)2>r
k

— (i0) {1— 2 (i9)+0<(i6)z)} :
Corollary 2.1 Wheny, =&,
Tky; = (i) [1+ ? (i0) +O((i9)2)} .
Proof Fory, = €n?, Oky, = 90Ky, so by Lemma 2.3,
Ty, = €9 (i9) {1— 'é‘ (i9)+0<(i9)2)}
— (6)[1+(i6) + O ((i6)?)] {1—g(i6)+0<(i6)2>}

= (i9) {1+2%k(i9)+o((i9)2>} .

Lemma 2.4 Wheny, = &"?,
m
1. L2
w0 =1+ = (i8) +0( (i6)?).
3 2 19)+0((0)%)
Proof From (9),yp =1 andy; = % Using Lemma 2.3, we find
S W = 3 W (i0)¢ {1 k(i9)+0<(i9)2)]
o = -5
22, 2

— [1+o<(ie)2)] +11(i6) [1+0(ie)}+o<(ie)2)

- 1+%i9+0((i9)2>.

Lemma 2.5 Wheny, = &"?,

kiwz Thyy = 1+ % (i9)+0((i9)2> .

187
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Proof From (10),y5 = 1 andy; = —%. Using Corollary 2.1, we find

éowz Dkylzkiwf(ie)k[ +27(|e)+o<(ue) )}
=y0*[1+i9+0< )]w* |9)[1+O(|6)]+O((i9)2)

- 1+%i6+0<(i9) )

3 Revisiting stability ordinates for AB and AM methods

To obtain the background for deriving the present predictorector results and demon-
strate a simpler proof than [4], we now apply the backwartferdince forms of the Adams
methods to rederive the results for ISB’s of general AB and rsthods.

Theorem 3.1 AB methods have nonzero |SB's only for ordersp=3,4, 7,8, ....

Proof We first note that it is well known that the ISB for AB1 (Eulengethod) is zero (see,
for example [2]). One can also check the expansion; AB1 haxpansion of =d? — 1=
6+ % (i6)2+ ..., which has a negative first real term, offering further euickethat the ISB
for AB1 is zero. We now proceed with the general casepfor 2.

For AB methods, we will show that, > 0 andd, < 0 for all ordersp, wherecp, and
d, are defined by (3). The pattern for which methods have nori&8t then follows from
the powers of the imaginary unit in (3). For example, foe 3, the first real term in the
expansion (3) ix3(i0)* = c36* > 0. Thus the boundary of the stability domain of AB3
swings to the right of the imaginary axis, and we have a nan¥eB for this method, as
seen in Figure 1b. Fqu= 6, the first real term in the expansion (3)iigi0)8 = dg(8)8 < 0;
thus the stability domain boundary of AB6 swings to the Iéfthe imaginary axis, and the
ISB of this method is zero.

We seek to find the values of anddp, in the case of a general ABmethod. We apply
(11) to (4), usingg = Ahto find

. m-1
e®=1+¢ Z}kayo- (12)
K=
As m— oo, the AB method (4) reproduces the exact solution. Thusgu&h we find
=1+ Y ko (13)
K=0
Combining (13) and (12) gives

m-1
(E-18) 5 WO =i8 5 Yo
k=0 k>m
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We now substitute fo€ using (3), where the ordgr= mfor AB. Using Lemma 2.3 and
Lemma 2.4, we find

cm(ie)m+1+dm(ie)m+2+o((ie)m”)} {1+%(ie)+o<(ie)2)]
= Y (i0)™1 1—%1(i6)+0<(i6)2)] + 1 (16)™?[1+0(16)] + O ((16)™).

Collecting like powers off, we find thatcy,, = ym and

1 m
écm+dm= Ym <*§> + Ym+1
so that 1 1
m m+
Om = Ym1 — EVm— ECm = Yme1— (T) Y. (14)

From Lemma 2.1, we hawg, = ym > 0. Using this result and (9) in (14) gives
m+1
Om = Y1 — o Ym

:2(m71+1)!/015(s+1)(s+2)...(s+m_1)[z(s+m)_(m+1)z]ds

1 1
= —m/o s(s+1)(s+2)--(s+m—1) [m?+1- 29| ds.

Becausar? +1—2s> 0 form> 2 and 0< s < 1, we find thatdy, < 0 for m> 2. Noting

that p = mfor AB methods, examining the sign of the first real term in€8)ablishes our

result that AB methods have nonzero ISB’s only for ordets 3,4, 7,8, 11,12, .. .. O

Theorem 3.2 AM methods have nonzero ISB's only for ordersp=1,2, 5,6, 9,10,.. ..

Proof We first note thap = 1 (Backwards Euler) ang= 2 (AM2) are well-known A-stable
methods and thus have nonzero ISB’s; one can also checketkginsions. AM1 has an
expansion of =1—e® =i —1(i6)*+..., which has a positive first real term, indicating
that AM1 has a nonzero ISB. The expansion for AM2 containg pately imaginary terms;
this is to be expected since the stability domain boundanAfd2 consists of the entire
imaginary axis.

We now prove the general result fpe> 3. We seek to find the values of andd,, in (3)
for a general AMp method. We apply (11) to (6), usirgg= Ah to find

. m
é9=1+¢ Z)w: OKyy. (15)
k=
As m— o, the AM method (6) reproduces the exact solution. Thus,gu&h we find
d?=1+i0 Z)w: Oys. (16)
K=
Combining (16) and (15) gives

(£—i0) g K OYyi=i6 Y %Oy
k=0 k 1

>m+
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We now substitute fo€ using (3), where the ordgy= m+ 1 for AM. Using Corollary
2.1 and Lemma 2.5, we find

[cm(ie)”‘+2+dm(ie)m+3+o((ie)"‘+4)] {1+%(i9)+o((i9)2)}
= Y (10)™2 [1+ 1_Tm (i8)+0 ((ie)z)} + Yons2(16)™°[1+0(i0)] + O ((16)™*)..

Collecting like powers off, we find thatcy, = v

i1 @nd

%cm+dm:m2—m1<m7‘l). (17)

From Lemma 2.2, we havg, = y, 1 < 0 for m> 1. Using this result and (10) in (17)
and simplifying gives

Om = V2 — (g) Y1 (18)
1

= i /Ol(s_ 1)s(s+1)(s+2)---(s+m—1) (25— n?) ds.

Becausds— 1) and(2s—m?) are both negative for & s< 1 andm> 2, we havedy, > 0 and
cm < 0 for AM methods, exactly opposite the result for AB methodiier examining the
sign of the first real term in (3) and noting that= m+ 1 for AM methods, we conclude that
Adams-Moulton methods have nonzero ISB’s only for ordets1,2, 5,6, 9,10,.... O

4 Stability ordinates of Adams predictor-corrector methods

We now consider two different categories of Adams predictorector methods: AB-
AM p methods and AB§—1)-AM p methods.

4.1 Two examples

We first give two examples, AB1-AM2 and AB2-AM2. The predic&B1 is given by

¥ = Yo+hf (to. o), (19)
and the predictor AB2 is given by

h
Y =Yo+ 3 (3f (to, o) — f(t-1,y-1)). (20)
In both cases, the corrector AM2 is given by
h
yi=Yo+5 (f (t,¥5) + f (to. o)) - (21)

We first consider AB1-AM2. Using (19), substitutingt,y) = Ay = %y, and letting
yi = rk to solve the resulting difference equation, we find that {&domes

1 1
r:1+§E(1+E)+§E. (22)
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To find the boundary of the stability domain, we follow thetrgan (22) wherejr| = 1. The
stability domain of this method is shown in Figure 2(a). We edso letr = €? and do a
Taylor expansion fo€ (0) in (22) to find that

. 1. 1.
E=i0+Z(i0)°—Z(i0)*+.... (23)
6 8
Because the first real term in this expansion is negative,-ABIR has a zero ISB.

We next consider AB2-AM2. Using (20) and (21), we find that #malogous equation
to (22) is

1 3 1
2_ ., = S (3r_ =
r7r+25(r+2(3r 1)>+25r,
which leads to the expansion
_i0- Lo Loy
£=ib 12(|6) +4(|9) +.... (24)

Since the first real term in this expansion is positive, AB2Ahas a honzero ISB (approx-
imately 129). The stability domain of this method is shown in Figuri)2(

() (b)

15 15

Im(&)
o
Im()
o

o

-2 -15 -1 -0.5 0 -2 -15 -1 -0.5
Re(€) Re(€)

Fig. 2 Shown are the boundaries of the stability regions for (a) AB42 and (b) AB2-AM2. The stability
regions consist of the inside of these curves. For (b), tBeis&pproximately 29. The intercept on the real
axis is—2 for both methods.

4.2 The general case

In general, from (4), our AB predictor will take the form
P - K
w:w+€%wa (25)
k=

whereM = m—1 for AB(p—1)-AM p methods andM = m for AB p-AM p methods; both
methods have ordgy = m+ 1. The general form of the AM corrector method is given by
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(6), where we replace all instancesyafon the right-hand side by; after the backwards
difference operations are done. This leads to

y1:yo+Eiﬁﬂky1+£(%+ﬁ+~%)(Y'f—yl) (26)
=

=yo+& ZJWDklerEVm(y‘;*yl)v
j=

where we have used (8).
We use (25) to substitute fgF in (26) and then use the exact solution (11) to find

m M
g9 =1+ 0Ky 4+ Eym | 1—€9 + Ofyo | 27
EIZOWI Y1 Ev( Ek;w yo) (27)

We now use the exact AM and AB expressions (16) and (13) totisutesfor the two in-
stances o&? in (27) respectively. Simplifying gives

0=(£-i0) (kiwj Dky1> -0 Y WO

k>m+1

)

M
+ & Ym {(E—i9)<ZOkayo>—i9 AR
K=

k>M-+1

whereM = m—1 for AB(p—1)-AM p methods andl = mfor AB p-AM p methods.
Applying Lemmas 2.3, 2.4, and 2.5 and Corollary 2.1 gives

0=(£-i6) (l+g+0<(i9)2))—i6 5 w:{(ie)k(u%k(iew---)} (28)

k>m+1

+& Ym

. . . . k. .
(§—i0)(1+0(i0))—i0 yk(l@)k (1— = (|9)+O((|9)2>)} .
k=M1 2
This formula permits us to compute the expansion of the bapndf the stability region
& (0) near the origin for Adams predictor-corrector methods.

We first consider general ABAM p methods, which have ordex

Theorem 4.1 Predictor-corrector ABp-AMp methods have nonzero I1SB's only for orders
p=12 5,6, 910,....

Proof Our general proof will requirgd > 3; we have already established that AB2-AM2
has a nonzero ISB in (24); also see Figure 2(b). pet 1, we can find that the series
expansion for the combination of forward Euler predictod &ackward Euler correction
is&=i0—3 (i8)?+ ---. Because this has a positive first real term, AB1-AML1 alsodas
nonzero ISB.

We letM = min (28) and substitute (3), usimrg= m+ 1 to find

0= (cnl18)™ 2+ 610 %+ ) (145 +yui0+-))

-6y wj(ie)k(l—k;zz(ie)—i—m) (29)

k>m+1

~(10)%ym ¥ W(ie)k(lfi(ie)Jr...)jL...’

k>m+1

~



Stabilty Ordinates of Adams Predictor-Corrector Methods 11

where we have kept only the terms that are needed to find thendabhterms in this expres-
sion. Examining the coefficients of tlied) ™2 and (i6)™"2 terms in (29) gives:

Cm = Vi1 (30)

m-1 1
dm = Vrkm_z - yr;H'lT + YmYm+1 —Cm (E + Vm> . (31)
From Corollary 2.1, we know that, < 0. Simplifying (30) gives

m
Om = V2 — §Wn+1+Vrzn~

From (18), we know thag;, , — 3y, > 0 form> 2, so we havel, > 0 form> 2. Thus
Cm < 0 anddy > 0 for m> 2 wherep = m+ 1. After examining the sign of the first real
term in (3) for this case, we conclude that B\M p methods have nonzero ISB’s only for
ordersp=1,2, 56, 9,10,..., aresultidentical to AN methods. |

We now examine general AB¢1)-AM p methods, which also have ordee= m+ 1.

Theorem 4.2 Predictor-corrector AB(p — 1)-AMp methods have nonzero 1SB’s only for
ordersp=3,4,7,8,....

Proof Our general proof will requir@ > 3; we have already established that AB1-AM2 has
a zero ISB in (23); also see Figure 2(a).

We now proceed with the general caseior 3. We letM = m— 1 in (28) and substitute
(3), usingp=m-+1to find

0= <Cm(i6)m+2+dm(i9)m+3+'") (l+§+ym(i9+"'))

-ie w‘f(ie)k(lfk;zz(ie)qt--) (32)

k>m+1

_(iQ)ZWn Z W(i@)k<l—g(i9)+"') 4o

k>m

where we have kept only the terms that are needed to find thedinsinant terms in this
expression. Examining the coefficients of {ié)™2 and(i6)™" terms in (32) gives

Cm= Y1+ Vo (33)

and
m—1

O = Yini2— (T) Vr:1+l+ym(ym+1*gym)*cm (%Hfm). (34)

We claim thatc, < 0 anddy, > 0 for m> 2. We first separately compute from (33) and
(34) thatc, = $2% andd, = — 22 From Lemma 2.1, we haug, > 1 for m> 3. Applying
this, substituting (9) and (10) in (33), and simplifying g$/

Cm > %+1+%_]Ym = m( 1 /Ol(ms+ 1)s(s+1)(s+2)...(s+m—1)ds>0

m+1)!

form> 3.

193



12 M. Ghrist, J. Reeger, and B. Fornberg 194

We now consider the expression fiy; in (34). We substitute for,,, from (33), note that
ym > 0, and apply Lemma 2.1.

e

Om = Vrﬁ+2*g)’r§+1+ (1%“) Yo—

m 1-m\ y
< %2_5%1"‘(7)%]

1

- m/ols(ﬁl)...(sntm—l) [(24+m—2n?) + ms(2s—n? —2)] ds

for m > 3, where we have used (9) and (10) and simplified. Note @Batm—Zmz) and
(23— m — 2) are both negative for & s< 1 andm > 3, sody < O for this case. Thus
Cm > 0 anddmy < 0 for m> 3 wherep = m+ 1. After examining the sign of the first real
term in (3), we conclude that AB—1)-AM p methods have nonzero ISB’s only for orders
p=3,4, 7,8,..., aresultidentical to AB methods. |

5 Conclusions

We have considered the question of when Adams methods ofajenmderp have nonzero
stability ordinates (ISB’s), which corresponds to beinap$ when applied to discretized
wave equations (for small enough stepsize). By applyinghiekwards difference for-
mulation of the AB and AM methods [5], we have proven thatpABM p methods have
nonzero stability ordinates only fgr= 1,2, 5,6, 9,10,..., which matches ANb methods.
We have also shown that AB{1)-AM p methods have nonzero stability ordinates only for
p=3,4, 7,8 1112 ..., which matches AB methods.
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