


FIG. 20. Number of poles on the positive real axis along the edge of a grid exterior to the fundamen-

tal domain. The initial conditions for solutions asymptotic to w−+1 in the top middle, bottom left,

and bottom right frames occur outside of the domain shown at (u(0) = −4.6822,u′(0) = 20.7787),

(u(0) = −10.7942,u′(0) = 120.3759), and (u(0) = 49.4606,u′(0) = −2442.3215), respectively. The

locations of these parameters in α vs. β space are shown later in figure 21. A detailed description

of the markers and shading is given in figure 3.

methodology of counting poles along the positive, and now negative, real axes allows the

identification of further special characteristics of these solutions.

In figure 21 the pole counts are shown along the negative and and positive real axes (left

and right frames, respectively) overlayed with the Weyl chambers marked by solid curves.

Also in these frames, dashed lines mark the boundaries of regions in the α versus β plane

where these solutions have only a finite number of poles on the negative real axis. Notice

that these dashed curves form a regular structure similar to that of the Weyl chambers, with

the parabolas offset by one unit on the α axis and the horizontal lines occurring at β values

where these new parabolas and those from the Weyl chambers intersect.
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FIG. 21. Number of poles on the positive (right) and negative (left) real axis for solutions asymp-

totic to w−+1 ∼ −2/3z as z → +∞ and z ∈ R and each α and β. The solid curves indicate the

boundaries of the Weyl chambers, while the dashed lines show the boundaries of regions of finite

poles on both the positive and negative real axes. Note that in this case β > 0 implies an infinity

of poles along R−. The circles (red) containing an × indicate those parameters shown in figure 20.

The changes in shading occur simultaneously in the left and right frames corresponding to a pole

moving from one half of the real axis (positive/negative) to the other.

1. The Tops of the Parabolas

To begin, consider the parameter choices at the tops of these new parabolas. These occur

at α = 2m and β = 0, m ∈ Z. In these cases the poles nearest the origin form very regular

patterns. Examples for several different choices of m are shown in figure 22. Notice the

pole structure near the center of these figures. When m < 0 poles of residue +1 align in a

structure similar to the roots with a positive real part of the degree m Okamoto I polynomial,

while poles of residue −1 appear similar to the roots of the degree m−1 polynomial. On the

other hand, when m > 0 the poles of residue +1 (likewise, −1) align in a structure similar

to all of the roots of the order m + 1 (likewise, m) polynomials. Note that the Okamoto

I polynomials in this context are singly indexed as in Ref. 19 while those in the rational

solutions of PIV are doubly indexed generalized Okamoto polynomials as in Ref. 7.

27

172



m= 3

-4 -2 0 2 4

Re(z)

m= 2

-4 -2 0 2 4

Re(z)

m= 1

-4 -2 0 2 4

Re(z)

-4
-2

0
2

4

I
m
(
z
)

m= −3m= −2m= −1

-4
-2

0
2

4

I
m
(
z
)

FIG. 22. Zero and pole locations of solutions to (1) with various values of m. Note that α = 2m

and β = 0. The case α = m = 0 is shown in one of the subplots of figure 5.

2. Solutions Along the Boundaries of the New Weyl-Like Chambers

When α and β are taken along the boundaries of the new chambers the solutions asymp-

totic to −2/3z are nonoscillatory as z → −∞. Examples of this are shown in the center

frames of figures 23 and 24. Now, if α or β are varied slightly such that the choice of param-

eters no longer falls on one of the boundaries, these solutions can have either an infinity of

poles or oscillate as z → −∞. Examples of this are also shown in the left and right frames

of figures 23 and 24.

3. When β is Positive

If β > 0, then figure 21 shows that all of the solutions asymptotic to w−+1 ∼ −2/3z as

z → +∞, z ∈ R, have an infinity of poles on the negative real axis. These solutions also do

not generally have an entire half-plane free of poles. Instead, numerical evidence points to a

value z0 ∈ R (possibly positive or negative) such that for all z with Re(z) > z0 the solution
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FIG. 23. Solutions (pole locations and residues) normal to the parabola β = −2(α − 2)2. All

frames depict the solutions asymptotic to −2/3z as z → +∞. The center frames occur directly

along the parabolas where α = α0 = 1.25 (top) and α = α0 = 2.75 (bottom). The left and right

frames in both the top and bottom then depict the solutions along the line normal to the parabola

at α = α0 at α0 ± 10−4.

has no poles.

4. Other Solutions With a Pole Free Half-Plane

These solutions asymptotic to −2/3z as z → +∞ are not the only solutions that have a

half-plane pole free. There are, of course, the rational solutions. Likewise, there are solutions

expressible in terms of parabolic cylinder or confluent hypergeometric functions that also

feature a pole free half-plane. These solutions arise for u
[PC;k]
ν,ε,d1,d2

, k = 1, 2, when either d1 = 0

or d2 = 0 with examples shown in figure 25. Generally, these other solutions with a pole

free half-plane feature different asymptotics as z → +∞ than −2
3
z.
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FIG. 24. Solutions (pole locations and residues) normal to the parabola β = −2(α + 2)2. All

frames depict the solutions asymptotic to −2/3z as z → +∞. The center frames occur directly

along the parabolas where α = α0 = −1.25 (top) and α = α0 = −2.75 (bottom). The left and

right frames in both the top and bottom then depict the solutions along the line normal to the

parabola at α = α0 at α0 ± 10−6.

D. Solutions With Adjacent Pole Free Sectors

In Ref. 5 it is pointed out that there are solutions for PIV when α = β = 0 that are similar

to the tronquée solutions of PI . For both PI and PIV (with α = β = 0) these solutions are

characterized by at least two adjacent pole free sectors. In the case of PIV these sectors are

shown in figure 8. Also, when α = β = 0, these solutions are characterized as appearing at

the boundaries of shaded regions or along curves within the pole counting diagrams. From

here on, the analogy with the tronqée solutions of PI will be dropped and these solutions

will be referred to only as having adjacent pole free sectors. The solutions asymptotic to

w−+1 ∼ −2/3z were considered separately in section VI C, but they would certainly fall into

this category. Other solutions with adjacent pole free sectors are asymptotic to w−−1 and

w+
µ , µ = ±1, as z → +∞ and z ∈ R. In certain cases there are two or three such trends

present simultaneously in a single solution, but the trends occur along different segments of
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FIG. 25. Examples (pole locations and residues) of u
[PC;k]
ν,ε,d1,d2

, k = 1, 2, for d1 = 0 or d2 = 0. These

solutions feature a half plane that contains only a finite number of poles.

the positive real axis. For instance, ICs generating solutions matching both w+
+1 and w+

−1

occur when β = 0. This is not surprising considering (14) and (15) and that these are simply

the solutions asymptotic to (12). Several examples are available in5.

In the following figures multiple frames will be shown depicting the different types of so-

lutions with adjacent pole free sectors for each (α,β) pair discussed. In most cases, solutions

where two or more behaviors appear in the same solution will be given in at least one frame.

In every case, the solutions shown occur at the boundary of or along the curve located in

the first shaded region extending from u′(0) = 5 to u′(0) = −5 in the right half plane (i.e.

u(0) > 0) of the appropriate pole counting figure. These solutions are all given along the

line u′(0) = 0.

First, figures 26 and 27 show two types of solutions where the asymptotic behaviors

of w+
µ , µ = ±1, and w−−1 are simultaneously present (along different segments of the real

axis) in a solution generated from a single IC. These are shown for (α = 1, β = 0) and

(α = 0, β = −2).

On the other hand, solutions that match both the roots w±−1 (again, in different segments
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FIG. 26. Solution types (along the real axis (top) and pole locations and residues (bottom)) with

adjacent pole free sectors for α = 1 and β = 0. In all frames u′(0) = 0. The left and right frames

both show that these solutions simultaneously match the roots (in different segments of the real

axis) w+
µ , µ = ±1, and w−−1.
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FIG. 27. Solution types (along the real axis (top) and pole locations and residues (bottom)) with

adjacent pole free sectors for α = 0 and β = −2. In all frames u′(0) = 0. The left and right frames

both show that these solutions simultaneously match the roots w+
µ , µ = ±1, and w−−1.
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of the real axis) were observed along the boundary β = −2(α− 1)2. An example appears in

figure 28 for the case α = 0.5 and β = −0.5.
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FIG. 28. Solution types (along the real axis (top) and pole locations and residues (bottom)) with

adjacent pole free sectors for α = 0.5 and β = −0.5. In all frames u′(0) = 0. The center frame

shows that there are solutions simultaneously matching both the roots w±−1.

Finally, all other parameter choices with adjacent pole free sectors have distinct ICs that

generate solutions asymptotic to each of the roots w+
µ , µ = ±1, and w−−1 as in the figure 29.

VII. CONCLUSIONS

This study of the fourth Painlevé equation started by numerically confirming various

previous analytic and asymptotic results. A further exploration of the fundamental domain

then identified solutions for general (α,β)-values with noteworthy characteristics, such as

numerous families of solutions with adjacent pole-free sectors. Also, solutions with a nearly

pole-free half plane were found.

Most of the observations in this study were obtained numerically, leaving analytical con-

siderations of some of the illustrated solution types an open topic. Although the explorations

extended outside of the fundamental domain in the (α,β)-plane, they considered only (α,β)-

values with relatively small magnitude. Further studies could be performed to look at pairs
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FIG. 29. Solution types (along the real axis (top) and pole locations and residues (bottom)) with

adjacent pole free sectors for α = 0 and β = −0.5. In all frames u′(0) = 0. In this case, all frames

exhibit only one of the asymptotic behaviors w±µ , µ = ±1.

with much larger magnitude. Another extension would be to also consider solutions that

are complex-valued along the real axis.
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17D. Bermúdez and D. J. Fernández, “Non-herminitiaon Hamiltonians and the Painlevé IV
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Paper 3-“Stability Ordinates of Adams Predictor-Corrector Methods”
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Abstract How far the stability domain of a numerical method for approximating solutions
to differential equations extends along the imaginary axisindicates how useful the method is
for approximating solutions to wave equations; this maximum extent is termed the imaginary
stability boundary, also known as the stability ordinate. It has previously been shown that
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2 M. Ghrist, J. Reeger, and B. Fornberg

ODEs have stability regions that include an interval of the form [−iSI , iSI ] on the imaginary
axis. We call the largest such value ofSI theimaginary stability boundary (ISB) of the ODE
integrator, which is also known as the stability ordinate. In the context of solving semidis-
crete wave equations, one desires to use a method with a largeISB, which allows larger
stable time steps; methods with zero ISB’s (i.e., no imaginary axis coverage in the stability
domain) will be unconditionally unstable. In this paper, weexplore the question of which
Adams methods have nonzero ISB’s.

Adams-Bashforth (AB), Adams-Moulton (AM), and Adams predictor-corrector meth-
ods are widely used multistep methods for approximating solutions to first-order differen-
tial equations. These methods generally have lower computational cost per iteration than
equivalent-order Runge-Kutta methods (due to requiring only one new function evaluation
per time step) while maintaining reasonably good accuracy and stability properties [1], [6].
A standardm-step Adams method for approximating solutions tody

dt = f (t,y) has the form

y j+1 = y j +
∫ t j+1

t j

p(t)dt, (1)

wheret j = t0+ jh, h is the stepsize, andy0 = y(t0). Here,p(t) is the polynomial interpolating
the points(tk,yk) for j−m+1≤ k≤ j (AB methods) orj−m+1≤ k≤ j+1 (AM methods).
We will henceforth usej = 0 to simplify the notation. AB methods have orderp = m while
AM methods have orderp = m+1.

In [2, Table G.3-1], it was observed (without proof) that AB methods of orderp (ABp)
have nonzero ISB’s only for ordersp= 3,4, 7,8, 11,12, . . . and AMp methods have nonzero
ISB’s only for ordersp = 1,2, 5,6, 9,10, . . .. These results can be deduced from [7] and
were independently shown in [4] and [3]. While [7] is not applicable to staggered meth-
ods, [4] and [3] proved that staggered AB methods of orderp have nonzero ISB’s only for
p = 2,3,4, 7,8, 11,12, . . ., ; none of these articles addressed Adams predictor-corrector
methods. Henceforth, we will only consider nonstaggered methods.

This study revisits our previous results from [4] with a new formulation and then extends
our results to Adams predictor-corrector methods. In particular, we examine the methods
ABp-AM p and AB(p−1)-AMp, both of which have orderp. We are unaware of any other
studies addressing the ISB’s of such methods for general order p. In [2, Table G.3-1], it was
claimed that for such methods, ‘most’ had nonzero ISB’s while ‘some’ had zero ISB’s. We
now proceed with proving that such methods follow very similar patterns to those of AB
and AM methods, with ABp-AM p methods following the same pattern as AMp methods
and AB(p−1)-AMp methods following the same pattern as ABp methods.

2 Preliminaries

When solving the linear problemdy
dt = λy, the edge of a stability domain is described by the

root ξ = λh of ρ(r)− ξ σ(r) = 0 whenr travels around the unit circler = eiθ . Here,ρ(r)
andσ(r) are the generating polynomials of the method (see, e.g., p. 27 of [6]).

To consider whether or not a stability domain has imaginary axis coverage, we wish to
describe the behavior of the stability domain boundary nearξ = 0. For an exact method,
we haveξ (θ) = lnr (see, e.g. Theorem 2.1 of [6], usingξ = ρ(r)

σ(r) .) Thus an exact method
satisfies

ξ = lnr = ln
(

eiθ
)
= iθ . (2)
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Stabilty Ordinates of Adams Predictor-Corrector Methods 3

A numerical scheme of orderp will instead lead to

ξ (θ) = iθ + cp(iθ)p+1+dp(iθ)p+2+O
(
(iθ)p+3

)
(3)

for some constantscp anddp. The sign of the firstreal term in this expansion will dictate
whether the stability domain boundary near the origin swings to the right or to the left of the
imaginary axis. See Figure 1 for an illustration comparing the stability domains of AB2 and
AB3.
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Fig. 1 Shown are portions of the boundaries of the stability regions for (a) AB2 and (b) AB3, with the solid
line marking the presently relevant section of the stabilitydomain boundary near the origin. In both graphs,
we see thatξ ≈ iθ nearθ = 0.. (a) If the first real term in the expansion ofξ (θ) is negative, then the ISB is
0. (b) If the first real term in the expansion ofξ (θ) is positive, then the ISB is nonzero. For AB3, the ISB is

12
5
√

11
≈ 0.724. The intercepts of AB2 and AB3 on the real axis are−1 and− 6

11, respectively.

2.1 Backwards difference forms of AB and AM methods

In [5][pp. 191-195], Henrici gave a backwards difference representation of (1) for AB and
AM methods. When applied tody

dt = λy, anm-step AB method can be represented by

y1 = y0+hλ
m−1

∑
k=0

γk ∇ky0, (4)

where

γk = (−1)k
∫ 1

0

(
−s
k

)
ds. (5)

Similarly, anm-step AM method can be represented by

y1 = y0+hλ
m

∑
k=0

γ∗k ∇ky1, (6)

where

γ∗k = (−1)k
∫ 1

0

(
−s+1

k

)
ds. (7)
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4 M. Ghrist, J. Reeger, and B. Fornberg

Henrici [5][p. 195] also established that

k

∑
j=0

γ∗j = γk (8)

from whichγ∗k = γk − γk−1.

Lemma 2.1 For all integers k ≥ 3, γk >
1
k .

Proof We first note an alternate way to expressγk. From (5),

γk = (−1)k
∫ 1

0

(
−s
k

)
ds =

1
k!

∫ 1

0
s(s+1)(s+2) . . .(s+ k−1) ds. (9)

We now prove this lemma via induction. Evaluating (9) directly givesγ3 =
3
8 > 1

3 , establish-
ing a base case. For the inductive step, we assume thatγ j >

1
j for some j ≥ 3 and seek to

establish thatγ j+1 >
1

j+1 . From (9),

γ j+1 =
∫ 1

0

s(s+1)(s+2) . . .(s+ j−1)
j!

(
s+ j
j+1

)
ds >

(
j

j+1

)
γ j >

(
j

j+1

)
1
j
=

1
j+1

.

Thusγk >
1
k by induction. ⊓⊔

Direct evaluation of (9) givesγ0 = 1, γ1 =
1
2 , andγ2 =

5
12. Thus as a corollary, we also have

thatγk > 0 for all integersk ≥ 0.

Lemma 2.2 For all integers k ≥ 1, γ∗k < 0.

Proof Evaluating (7) directly givesγ∗0 = 1 andγ∗1 = − 1
2 . For the general case, we rewrite

(7) to find

γ∗k =
1
k!

∫ 1

0
(s−1)s(s+1)(s+2) . . .(s+ k−2)ds. (10)

The integrand is negative for 0< s < 1, soγ∗k < 0 for k ≥ 1. ⊓⊔

2.2 Exploring the exact solution

Using ξ = λh, the exact solution tody
dt = λy is y(t) = eλ t = eξ t/h where, without loss of

generality, we have chosent0 = 0 andy(t0) = 1. For an exact method,ξ = iθ from (2), so

yn = y(nh) = einθ . (11)

An alternate way to view this equation is that we are seeking the exact solution to the rele-
vant difference equation when following the rootr that hasr = eiθ , which givesyn = rn =(
eiθ )n

= einθ .

Lemma 2.3 When yn = einθ ,

∇ky0 = (iθ)k
[
1− k

2
(iθ)+O

(
(iθ)2

)]
.
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Proof For yn = einθ , ∇y0 =
(
1− e−iθ ) and∇ky0 =

(
1− e−iθ)k

so that

∇ky0 =

[
1−
(

1+(−iθ)+
1
2!

(−iθ)2+O
(
(iθ)3

))]k

= (iθ)k
[
1− 1

2
(−iθ)+O

(
(iθ)2

)]k

= (iθ)k
[
1− k

2
(iθ)+O

(
(iθ)2

)]
.

⊓⊔

Corollary 2.1 When yn = einθ ,

∇ky1 = (iθ)k
[
1+

2− k
2

(iθ)+O
(
(iθ)2

)]
.

Proof For yn = einθ , ∇ky1 = eiθ ∇ky0, so by Lemma 2.3,

∇ky1 = eiθ (iθ)k
[
1− k

2
(iθ)+O

(
(iθ)2

)]

= (iθ)k
[
1+(iθ)+O

(
(iθ)2

)][
1− k

2
(iθ)+O

(
(iθ)2

)]

= (iθ)k
[
1+

2− k
2

(iθ)+O
(
(iθ)2

)]
.

⊓⊔

Lemma 2.4 When yn = einθ ,

m

∑
k=0

γk ∇ky0 = 1+
1
2
(iθ)+O

(
(iθ)2

)
.

Proof From (9),γ0 = 1 andγ1 =
1
2 . Using Lemma 2.3, we find

m

∑
k=0

γk ∇ky0 =
m

∑
k=0

γk (iθ)k
[
1− k

2
(iθ)+O

(
(iθ)2

)]

= γ0

[
1+O

(
(iθ)2

)]
+ γ1 (iθ) [1+O(iθ)]+O

(
(iθ)2

)

= 1+
1
2

iθ +O
(
(iθ)2

)
.

⊓⊔

Lemma 2.5 When yn = einθ ,

m

∑
k=0

γ∗k ∇ky1 = 1+
1
2
(iθ)+O

(
(iθ)2

)
.
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Proof From (10),γ∗0 = 1 andγ∗1 =− 1
2 . Using Corollary 2.1, we find

m

∑
k=0

γ∗k ∇ky1 =
m

∑
k=0

γ∗k (iθ)
k
[
1+

2− k
2

(iθ)+O
(
(iθ)2

)]

= γ∗0
[
1+ iθ +O

(
(iθ)2

)]
+ γ∗1 (iθ) [1+O(iθ)]+O

(
(iθ)2

)

= 1+
1
2

iθ +O
(
(iθ)2

)
.

⊓⊔

3 Revisiting stability ordinates for AB and AM methods

To obtain the background for deriving the present predictor-corrector results and demon-
strate a simpler proof than [4], we now apply the backwards difference forms of the Adams
methods to rederive the results for ISB’s of general AB and AMmethods.

Theorem 3.1 AB methods have nonzero ISB’s only for orders p = 3,4, 7,8, . . ..

Proof We first note that it is well known that the ISB for AB1 (Euler’smethod) is zero (see,
for example [2]). One can also check the expansion; AB1 has anexpansion ofξ = eiθ −1=
iθ + 1

2 (iθ)
2+ . . . , which has a negative first real term, offering further evidence that the ISB

for AB1 is zero. We now proceed with the general case forp ≥ 2.
For AB methods, we will show thatcp > 0 anddp < 0 for all ordersp, wherecp and

dp are defined by (3). The pattern for which methods have nonzeroISB’s then follows from
the powers of the imaginary unit in (3). For example, forp = 3, the first real term in the
expansion (3) isc3(iθ)4 = c3θ 4 > 0. Thus the boundary of the stability domain of AB3
swings to the right of the imaginary axis, and we have a nonzero ISB for this method, as
seen in Figure 1b. Forp = 6, the first real term in the expansion (3) isd6(iθ)8 = d6(θ)8 < 0;
thus the stability domain boundary of AB6 swings to the left of the imaginary axis, and the
ISB of this method is zero.

We seek to find the values ofcp anddp in the case of a general ABp method. We apply
(11) to (4), usingξ = λh to find

eiθ = 1+ξ
m−1

∑
k=0

γk ∇ky0. (12)

As m → ∞, the AB method (4) reproduces the exact solution. Thus, using (2), we find

eiθ = 1+ iθ
∞

∑
k=0

γk ∇ky0. (13)

Combining (13) and (12) gives

(ξ − iθ)
m−1

∑
k=0

γk ∇ky0 = iθ ∑
k≥m

γk∇ky0.
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We now substitute forξ using (3), where the orderp = m for AB. Using Lemma 2.3 and
Lemma 2.4, we find

[
cm (iθ)m+1+dm (iθ)m+2+O

(
(iθ)m+3

)][
1+

1
2
(iθ)+O

(
(iθ)2

)]

= γm (iθ)m+1
[
1− m

2
(iθ)+O

(
(iθ)2

)]
+ γm+1 (iθ)m+2 [1+O(iθ)]+O

(
(iθ)m+3

)
.

Collecting like powers ofiθ , we find thatcm = γm and

1
2

cm +dm = γm

(
−m

2

)
+ γm+1

so that

dm = γm+1−
m
2

γm − 1
2

cm = γm+1−
(

m+1
2

)
γm. (14)

From Lemma 2.1, we havecm = γm > 0. Using this result and (9) in (14) gives

dm = γm+1−
(

m+1
2

)
γm

=
1

2(m+1)!

∫ 1

0
s(s+1)(s+2) · · ·(s+m−1)

[
2(s+m)− (m+1)2]ds

= − 1
2(m+1)!

∫ 1

0
s(s+1)(s+2) · · ·(s+m−1)

[
m2+1−2s

]
ds.

Becausem2+1−2s > 0 for m ≥ 2 and 0≤ s ≤ 1, we find thatdm < 0 for m ≥ 2. Noting
that p = m for AB methods, examining the sign of the first real term in (3)establishes our
result that AB methods have nonzero ISB’s only for ordersp = 3,4, 7,8, 11,12, . . .. ⊓⊔

Theorem 3.2 AM methods have nonzero ISB’s only for orders p = 1,2, 5,6, 9,10, . . ..

Proof We first note thatp= 1 (Backwards Euler) andp= 2 (AM2) are well-known A-stable
methods and thus have nonzero ISB’s; one can also check theirexpansions. AM1 has an
expansion ofξ = 1−e−iθ = iθ − 1

2 (iθ)
2+ . . . , which has a positive first real term, indicating

that AM1 has a nonzero ISB. The expansion for AM2 contains only purely imaginary terms;
this is to be expected since the stability domain boundary for AM2 consists of the entire
imaginary axis.

We now prove the general result forp ≥ 3. We seek to find the values ofcp anddp in (3)
for a general AMp method. We apply (11) to (6), usingξ = λh to find

eiθ = 1+ξ
m

∑
k=0

γ∗k ∇ky1. (15)

As m → ∞, the AM method (6) reproduces the exact solution. Thus, using (2), we find

eiθ = 1+ iθ
∞

∑
k=0

γ∗k ∇ky1. (16)

Combining (16) and (15) gives

(ξ − iθ)
m

∑
k=0

γ∗k ∇ky1 = iθ ∑
k≥m+1

γ∗k ∇ky1.
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We now substitute forξ using (3), where the orderp = m+1 for AM. Using Corollary
2.1 and Lemma 2.5, we find

[
cm (iθ)m+2+dm (iθ)m+3+O

(
(iθ)m+4

)][
1+

1
2
(iθ)+O

(
(iθ)2

)]

= γ∗m+1 (iθ)
m+2

[
1+

1−m
2

(iθ)+O
(
(iθ)2

)]
+ γ∗m+2 (iθ)

m+3 [1+O(iθ)]+O
(
(iθ)m+4

)
.

Collecting like powers ofiθ , we find thatcm = γ∗m+1 and

1
2

cm +dm = γ∗m+2− γ∗m+1

(
m−1

2

)
. (17)

From Lemma 2.2, we havecm = γ∗m+1 < 0 for m ≥ 1. Using this result and (10) in (17)
and simplifying gives

dm = γ∗m+2−
(m

2

)
γ∗m+1 (18)

=
1

2(m+2)!

∫ 1

0
(s−1)s(s+1)(s+2) · · ·(s+m−1)

(
2s−m2)ds.

Because(s−1) and(2s−m2) are both negative for 0< s< 1 andm≥ 2, we havedm > 0 and
cm < 0 for AM methods, exactly opposite the result for AB methods.After examining the
sign of the first real term in (3) and noting thatp = m+1 for AM methods, we conclude that
Adams-Moulton methods have nonzero ISB’s only for ordersp = 1,2, 5,6, 9,10, . . .. ⊓⊔

4 Stability ordinates of Adams predictor-corrector methods

We now consider two different categories of Adams predictor-corrector methods: ABp-
AM p methods and AB(p−1)-AMp methods.

4.1 Two examples

We first give two examples, AB1-AM2 and AB2-AM2. The predictor AB1 is given by

yP
1 = y0+h f (t0,y0) , (19)

and the predictor AB2 is given by

yP
1 = y0+

h
2
(3 f (t0,y0)− f (t−1,y−1)) . (20)

In both cases, the corrector AM2 is given by

y1 = y0+
h
2

(
f
(
t1,y

P
1

)
+ f (t0,y0)

)
. (21)

We first consider AB1-AM2. Using (19), substitutingf (t,y) = λy = ξ
h y, and letting

yk = rk to solve the resulting difference equation, we find that (21)becomes

r = 1+
1
2

ξ (1+ξ )+
1
2

ξ . (22)
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To find the boundary of the stability domain, we follow the root ξ in (22) where|r|= 1. The
stability domain of this method is shown in Figure 2(a). We can also letr = eiθ and do a
Taylor expansion forξ (θ) in (22) to find that

ξ = iθ +
1
6
(iθ)3− 1

8
(iθ)4+ . . . . (23)

Because the first real term in this expansion is negative, AB1-AM2 has a zero ISB.
We next consider AB2-AM2. Using (20) and (21), we find that theanalogous equation

to (22) is

r2 = r+
1
2

ξ
(

r+
ξ
2
(3r−1)

)
+

1
2

ξ r,

which leads to the expansion

ξ = iθ − 1
12

(iθ)3+
1
4
(iθ)4+ . . . . (24)

Since the first real term in this expansion is positive, AB2-AM2 has a nonzero ISB (approx-
imately 1.29). The stability domain of this method is shown in Figure 2(b).

−2 −1.5 −1 −0.5 0

−1.5

−1

−0.5

0

0.5

1

1.5

Re(ξ )

Im
(ξ

 )

−2 −1.5 −1 −0.5 0

−1.5

−1

−0.5

0

0.5

1

1.5

Re(ξ )

Im
(ξ

 )

(a) (b)

Fig. 2 Shown are the boundaries of the stability regions for (a) AB1-AM2 and (b) AB2-AM2. The stability
regions consist of the inside of these curves. For (b), the ISB is approximately 1.29. The intercept on the real
axis is−2 for both methods.

4.2 The general case

In general, from (4), our AB predictor will take the form

yP
1 = y0+ξ

M

∑
k=0

γk ∇ky0 (25)

whereM = m−1 for AB(p−1)-AMp methods andM = m for ABp-AM p methods; both
methods have orderp = m+1. The general form of the AM corrector method is given by
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(6), where we replace all instances ofy1 on the right-hand side byyP
1 after the backwards

difference operations are done. This leads to

y1 = y0+ξ
m

∑
j=0

γ∗k ∇ky1+ξ (γ∗0 + γ∗1 + · · ·γ∗m)
(
yP

1 − y1
)

(26)

= y0+ξ
m

∑
j=0

γ∗k ∇ky1+ξ γm
(
yP

1 − y1
)
,

where we have used (8).
We use (25) to substitute foryP

1 in (26) and then use the exact solution (11) to find

eiθ = 1+ξ
m

∑
j=0

γ∗k ∇ky1+ξ γm

(
1− eiθ +ξ

M

∑
k=0

γk ∇ky0

)
. (27)

We now use the exact AM and AB expressions (16) and (13) to substitute for the two in-
stances ofeiθ in (27) respectively. Simplifying gives

0 = (ξ − iθ)

(
m

∑
k=0

γ∗k ∇ky1

)
− iθ ∑

k≥m+1

γ∗k ∇ky1

+ ξ γm

[
(ξ − iθ)

(
M

∑
k=0

γk ∇ky0

)
− iθ ∑

k≥M+1

γk ∇ky0

]
,

whereM = m−1 for AB(p−1)-AMp methods andM = m for ABp-AM p methods.
Applying Lemmas 2.3, 2.4, and 2.5 and Corollary 2.1 gives

0 = (ξ − iθ)
(

1+
iθ
2
+O

(
(iθ)2

))
− iθ ∑

k≥m+1

γ∗k

[
(iθ)k

(
1+

2− k
2

(iθ)+ · · ·
)]

(28)

+ξ γm

[
(ξ − iθ)(1+O(iθ))− iθ ∑

k≥M+1

γk (iθ)k
(

1− k
2
(iθ)+O

(
(iθ)2

))]
.

This formula permits us to compute the expansion of the boundary of the stability region
ξ (θ) near the origin for Adams predictor-corrector methods.

We first consider general ABp-AM p methods, which have orderp.

Theorem 4.1 Predictor-corrector ABp-AMp methods have nonzero ISB’s only for orders
p = 1,2, 5,6, 9,10, . . ..

Proof Our general proof will requirep ≥ 3; we have already established that AB2-AM2
has a nonzero ISB in (24); also see Figure 2(b). Forp = 1, we can find that the series
expansion for the combination of forward Euler predictor and backward Euler correction
is ξ = iθ − 1

2 (iθ)
2+ · · · . Because this has a positive first real term, AB1-AM1 also hasa

nonzero ISB.
We letM = m in (28) and substitute (3), usingp = m+1 to find

0 =
(

cm (iθ)m+2+dm (iθ)m+3+ · · ·
)(

1+
iθ
2
+ γm (iθ + · · ·)

)

−iθ ∑
k≥m+1

γ∗k (iθ)
k
(

1− k−2
2

(iθ)+ · · ·
)

(29)

−(iθ)2 γm ∑
k≥m+1

γk (iθ)k
(

1− k
2
(iθ)+ · · ·

)
+ · · · ,
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where we have kept only the terms that are needed to find the dominant terms in this expres-
sion. Examining the coefficients of the(iθ)m+2 and(iθ)m+3 terms in (29) gives:

cm = γ∗m+1 (30)

dm = γ∗m+2− γ∗m+1
m−1

2
+ γmγm+1− cm

(
1
2
+ γm

)
. (31)

From Corollary 2.1, we know thatcm < 0. Simplifying (30) gives

dm = γ∗m+2−
m
2

γ∗m+1+ γ2
m.

From (18), we know thatγ∗m+2− m
2 γ∗m+1 > 0 for m ≥ 2, so we havedm > 0 for m ≥ 2. Thus

cm < 0 anddm > 0 for m ≥ 2 wherep = m+1. After examining the sign of the first real
term in (3) for this case, we conclude that ABp-AM p methods have nonzero ISB’s only for
ordersp = 1,2, 5,6, 9,10, . . ., a result identical to AMp methods. ⊓⊔

We now examine general AB(p−1)-AMp methods, which also have orderp = m+1.

Theorem 4.2 Predictor-corrector AB(p − 1)-AMp methods have nonzero ISB’s only for
orders p = 3,4, 7,8, . . ..

Proof Our general proof will requirep ≥ 3; we have already established that AB1-AM2 has
a zero ISB in (23); also see Figure 2(a).

We now proceed with the general case forp ≥ 3. We letM = m−1 in (28) and substitute
(3), usingp = m+1 to find

0 =
(

cm (iθ)m+2+dm (iθ)m+3+ · · ·
)(

1+
iθ
2
+ γm (iθ + · · ·)

)

−iθ ∑
k≥m+1

γ∗k (iθ)
k
(

1− k−2
2

(iθ)+ · · ·
)

(32)

−(iθ)2 γm ∑
k≥m

γk (iθ)k
(

1− k
2
(iθ)+ · · ·

)
+ · · · ,

where we have kept only the terms that are needed to find the first dominant terms in this
expression. Examining the coefficients of the(iθ)m+2 and(iθ)m+3 terms in (32) gives

cm = γ∗m+1+ γ2
m (33)

and

dm = γ∗m+2−
(

m−1
2

)
γ∗m+1+ γm

(
γm+1−

m
2

γm

)
− cm

(
1
2
+ γm

)
. (34)

We claim thatcm < 0 anddm > 0 for m ≥ 2. We first separately compute from (33) and
(34) thatc2 =

329
2880 andd2 =− 265

1536. From Lemma 2.1, we haveγm > 1
m for m ≥ 3. Applying

this, substituting (9) and (10) in (33), and simplifying gives

cm > γ∗m+1+
1
m

γm =
1

m(m+1)!

∫ 1

0
(ms+1)s(s+1)(s+2) . . .(s+m−1)ds > 0

for m ≥ 3.
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We now consider the expression fordm in (34). We substitute forcm from (33), note that
γm > 0, and apply Lemma 2.1.

dm = γ∗m+2−
m
2

γ∗m+1+

(
1−m

2

)
γ2

m − γ3
m

< γ∗m+2−
m
2

γ∗m+1+

(
1−m

2

)
γm

m

=
1

2m(m+2)!

∫ 1

0
s(s+1) . . .(s+m−1)

[(
2+m−2m2)+ms

(
2s−m2−2

)]
ds

for m ≥ 3, where we have used (9) and (10) and simplified. Note that
(
2+m−2m2

)
and(

2s−m2−2
)

are both negative for 0< s < 1 andm ≥ 3, sodm < 0 for this case. Thus
cm > 0 anddm < 0 for m ≥ 3 wherep = m+1. After examining the sign of the first real
term in (3), we conclude that AB(p−1)-AMp methods have nonzero ISB’s only for orders
p = 3,4, 7,8, . . ., a result identical to ABp methods. ⊓⊔

5 Conclusions

We have considered the question of when Adams methods of general orderp have nonzero
stability ordinates (ISB’s), which corresponds to being stable when applied to discretized
wave equations (for small enough stepsize). By applying thebackwards difference for-
mulation of the AB and AM methods [5], we have proven that ABp-AM p methods have
nonzero stability ordinates only forp = 1,2, 5,6, 9,10, . . ., which matches AMp methods.
We have also shown that AB(p−1)-AMp methods have nonzero stability ordinates only for
p = 3,4, 7,8, 11,12, . . ., which matches ABp methods.
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