Date of Award

Spring 1-1-2013

Document Type

Thesis

Degree Name

Master of Science (MS)

First Advisor

Lupita Montoya

Second Advisor

Jean Hertzberg

Third Advisor

John Zhai

Abstract

Experimental flow visualization study was used to assess the ability of synthetic jets to be adapted for control of air flows and particulates in an indoor environment. Flow visualization was used to determine whether paired synthetic jet modules installed onto the surface of a supply diffuser could significantly impact room air distribution through changing the angle at which supply air left the diffuser when mixing into the room air. Control over the supply jet angle is directly related to how well the supply air mixes with the room air and the overall air quality of the room. A lab with a high air exchange rate (21 ACH) was selected to act as the environment to test the synthetic jets in. This lab space is representative of occupational indoor environments that may require ventilation strategies beyond typical systems to ensure the safe and efficient operation of the space. Three synthetic-jet modules were tested including two pairs of small one-inch diameter jets used in a previous small-scale ventilation study[1] and two larger two-inch diameter jet pairs constructed specifically for this study. Statistical methods were used to compare the visualized supply flow with active synthetic jet flow control versus a baseline case (no flow control). A significant increase in the angle of mixing of the supply air of up to 4⁰ or 50% of the original supply jet angle was achieved.

Share

COinS